DNA 损伤时的核极组织和核糖体 DNA 稳定性

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2024-06-10 DOI:10.1016/j.ceb.2024.102380
Stavroula Boukoura, Dorthe Helena Larsen
{"title":"DNA 损伤时的核极组织和核糖体 DNA 稳定性","authors":"Stavroula Boukoura,&nbsp;Dorthe Helena Larsen","doi":"10.1016/j.ceb.2024.102380","DOIUrl":null,"url":null,"abstract":"<div><p>Eukaryotic nuclei are structured into sub-compartments orchestrating various cellular functions. The nucleolus is the largest nuclear organelle: a biomolecular condensate with an architecture composed of immiscible fluids facilitating ribosome biogenesis. The nucleolus forms upon the transcription of the repetitive ribosomal RNA genes (rDNA) that cluster in this compartment. rDNA is intrinsically unstable and prone to rearrangements and copy number variation. Upon DNA damage, a specialized nucleolar-DNA Damage Response (n-DDR) is activated: nucleolar transcription is inhibited, the architecture is rearranged, and rDNA is relocated to the nucleolar periphery. Recent data have highlighted how the composition of nucleoli, its structure, chemical and physical properties, contribute to rDNA stability. In this mini-review we focus on recent data that start to reveal how nucleolar composition and the n-DDR work together to ensure rDNA integrity.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"89 ","pages":"Article 102380"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleolar organization and ribosomal DNA stability in response to DNA damage\",\"authors\":\"Stavroula Boukoura,&nbsp;Dorthe Helena Larsen\",\"doi\":\"10.1016/j.ceb.2024.102380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Eukaryotic nuclei are structured into sub-compartments orchestrating various cellular functions. The nucleolus is the largest nuclear organelle: a biomolecular condensate with an architecture composed of immiscible fluids facilitating ribosome biogenesis. The nucleolus forms upon the transcription of the repetitive ribosomal RNA genes (rDNA) that cluster in this compartment. rDNA is intrinsically unstable and prone to rearrangements and copy number variation. Upon DNA damage, a specialized nucleolar-DNA Damage Response (n-DDR) is activated: nucleolar transcription is inhibited, the architecture is rearranged, and rDNA is relocated to the nucleolar periphery. Recent data have highlighted how the composition of nucleoli, its structure, chemical and physical properties, contribute to rDNA stability. In this mini-review we focus on recent data that start to reveal how nucleolar composition and the n-DDR work together to ensure rDNA integrity.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"89 \",\"pages\":\"Article 102380\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000590\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000590","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物的细胞核由多个亚细胞器组成,协调着各种细胞功能。核仁是最大的核细胞器:它是一种生物分子凝聚体,其结构由不相溶的液体组成,有利于核糖体的生物生成。核小体是在核糖体 RNA 重复基因(rDNA)转录后形成的,rDNA 在本质上是不稳定的,容易发生重排和拷贝数变异。DNA 损伤时,一种特殊的核小体-DNA 损伤反应(n-DDR)被激活:核小体转录被抑制,结构被重新排列,rDNA 被重新定位到核小体外围。最近的数据强调了核小体的组成、结构、化学和物理特性是如何影响 rDNA 稳定性的。在这篇微型综述中,我们将重点讨论最近的数据,这些数据开始揭示核小体的组成和 n-DDR 如何共同确保 rDNA 的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nucleolar organization and ribosomal DNA stability in response to DNA damage

Eukaryotic nuclei are structured into sub-compartments orchestrating various cellular functions. The nucleolus is the largest nuclear organelle: a biomolecular condensate with an architecture composed of immiscible fluids facilitating ribosome biogenesis. The nucleolus forms upon the transcription of the repetitive ribosomal RNA genes (rDNA) that cluster in this compartment. rDNA is intrinsically unstable and prone to rearrangements and copy number variation. Upon DNA damage, a specialized nucleolar-DNA Damage Response (n-DDR) is activated: nucleolar transcription is inhibited, the architecture is rearranged, and rDNA is relocated to the nucleolar periphery. Recent data have highlighted how the composition of nucleoli, its structure, chemical and physical properties, contribute to rDNA stability. In this mini-review we focus on recent data that start to reveal how nucleolar composition and the n-DDR work together to ensure rDNA integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Interplay between Notch signaling and mechanical forces during developmental patterning processes Design principles of regulatory networks underlying epithelial mesenchymal plasticity in cancer cells Unleashing XIST from X-chromosome inactivation SMC-mediated chromosome organization: Does loop extrusion explain it all? Mechanochemical control systems regulating animal cell size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1