Mao Ji;Meng Huang;Haomin Lyu;Sheng Shi;Bo Qi;Chengrong Li
{"title":"高灵敏度、宽量程的无金属光学压力传感器","authors":"Mao Ji;Meng Huang;Haomin Lyu;Sheng Shi;Bo Qi;Chengrong Li","doi":"10.17775/CSEEJPES.2022.06240","DOIUrl":null,"url":null,"abstract":"Pressure monitoring of a transformer oil tank can grasp the pressure change process caused by gas production when severe internal defects occur and take timely measures to ensure the safe operation of the transformer. Existing pressure sensors generally use metal encapsulation or have an air cavity structure, threatening the transformer's insulation if it is directly used inside the transformer. To this end, this paper proposes a method for developing a high-sensitivity, large-range, and metallization-free optical pressure sensing device with temperature compensation. Fiber grating is encapsulated by fluorosilicone rubber and supplemented by an epoxy resin shielding shell on the outside. At the same time, a double-grating vertical arrangement is adopted to improve pressure measurement sensitivity, further avoiding the influence of temperature rise caused by a defect of the transformer on the measurement result of the sensor. In addition, by optimizing the geometric structure of the internal sensitizing element, pre-stretching length of the fiber grating, gap distance, and other parameters, probe size can be reduced while ensuring the sensor's performance. Results show the proposed method can meet the requirements of sensor fabrication with different sensitivities and ranges, and to a certain extent, both high sensitivity and extensive ranges can be taken into account. The sensitivity of the fabricated prototype is 15 pm/kPa, and the range is about 0.2 MPa. At the same time, the metal-free feature of the sensor makes it suitable for use in various oil-immersed power equipment. It records oil pressure changes caused by oil discharge breakdown, making it sensitive to small pressure changes in early failures.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1291-1300"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322696","citationCount":"0","resultStr":"{\"title\":\"Metal-Free Optical Pressure Sensor with High Sensitivity and Extensive Range\",\"authors\":\"Mao Ji;Meng Huang;Haomin Lyu;Sheng Shi;Bo Qi;Chengrong Li\",\"doi\":\"10.17775/CSEEJPES.2022.06240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pressure monitoring of a transformer oil tank can grasp the pressure change process caused by gas production when severe internal defects occur and take timely measures to ensure the safe operation of the transformer. Existing pressure sensors generally use metal encapsulation or have an air cavity structure, threatening the transformer's insulation if it is directly used inside the transformer. To this end, this paper proposes a method for developing a high-sensitivity, large-range, and metallization-free optical pressure sensing device with temperature compensation. Fiber grating is encapsulated by fluorosilicone rubber and supplemented by an epoxy resin shielding shell on the outside. At the same time, a double-grating vertical arrangement is adopted to improve pressure measurement sensitivity, further avoiding the influence of temperature rise caused by a defect of the transformer on the measurement result of the sensor. In addition, by optimizing the geometric structure of the internal sensitizing element, pre-stretching length of the fiber grating, gap distance, and other parameters, probe size can be reduced while ensuring the sensor's performance. Results show the proposed method can meet the requirements of sensor fabrication with different sensitivities and ranges, and to a certain extent, both high sensitivity and extensive ranges can be taken into account. The sensitivity of the fabricated prototype is 15 pm/kPa, and the range is about 0.2 MPa. At the same time, the metal-free feature of the sensor makes it suitable for use in various oil-immersed power equipment. It records oil pressure changes caused by oil discharge breakdown, making it sensitive to small pressure changes in early failures.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 3\",\"pages\":\"1291-1300\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322696\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10322696/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322696/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Metal-Free Optical Pressure Sensor with High Sensitivity and Extensive Range
Pressure monitoring of a transformer oil tank can grasp the pressure change process caused by gas production when severe internal defects occur and take timely measures to ensure the safe operation of the transformer. Existing pressure sensors generally use metal encapsulation or have an air cavity structure, threatening the transformer's insulation if it is directly used inside the transformer. To this end, this paper proposes a method for developing a high-sensitivity, large-range, and metallization-free optical pressure sensing device with temperature compensation. Fiber grating is encapsulated by fluorosilicone rubber and supplemented by an epoxy resin shielding shell on the outside. At the same time, a double-grating vertical arrangement is adopted to improve pressure measurement sensitivity, further avoiding the influence of temperature rise caused by a defect of the transformer on the measurement result of the sensor. In addition, by optimizing the geometric structure of the internal sensitizing element, pre-stretching length of the fiber grating, gap distance, and other parameters, probe size can be reduced while ensuring the sensor's performance. Results show the proposed method can meet the requirements of sensor fabrication with different sensitivities and ranges, and to a certain extent, both high sensitivity and extensive ranges can be taken into account. The sensitivity of the fabricated prototype is 15 pm/kPa, and the range is about 0.2 MPa. At the same time, the metal-free feature of the sensor makes it suitable for use in various oil-immersed power equipment. It records oil pressure changes caused by oil discharge breakdown, making it sensitive to small pressure changes in early failures.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.