管道热准动力学综合电力和供热系统的可观测性分析

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2024-02-14 DOI:10.17775/CSEEJPES.2022.04860
Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu
{"title":"管道热准动力学综合电力和供热系统的可观测性分析","authors":"Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.04860","DOIUrl":null,"url":null,"abstract":"Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436601","citationCount":"0","resultStr":"{\"title\":\"Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-Dynamics in Pipelines\",\"authors\":\"Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu\",\"doi\":\"10.17775/CSEEJPES.2022.04860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436601\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10436601/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10436601/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

可观测性分析(OA)对于获得综合电力和供热系统(IEHS)中状态估计(SE)的可用输入测量值至关重要。考虑到管道中的热准动力学,供热系统中的测量方程取决于估计结果,从而导致 OA 和 SE 之间的相互依存关系。传统的 OA 方法要求在执行 SE 之前准确知道测量方程,因此不适用于 IEHS。为了弥补这一缺陷,我们为 IEHS 设计了一种基于情景的 OA 方案,该方案可为一组预定义的时延情景提供可靠的分析结果,以应对这种相互依赖关系。作为其核心程序,可观测状态识别和可观测性恢复是通过整数线性规划来实现的。为证明所提方案的有效性和优越性,进行了数值测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-Dynamics in Pipelines
Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1