{"title":"气候变暖降低了亚热带海拔梯度土壤有机碳分解的启动效应","authors":"Xiaojie Li, Maokui Lyu, Qiufang Zhang, Jiguang Feng, Xiaofei Liu, Biao Zhu, Xiaohong Wang, Yusheng Yang, Jinsheng Xie","doi":"10.1029/2024GB008113","DOIUrl":null,"url":null,"abstract":"<p>The priming effects (PEs) of soil organic carbon (SOC) decomposition is a crucial process affecting the C balance of terrestrial ecosystems. However, there is uncertainty about how PEs will respond to climate warming. In this study, we sampled soils along a subtropical elevation gradient in China and conducted a 126-day lab-incubation experiment with and without the addition of <sup>13</sup>C-labeled high-bioavailability glucose or low-bioavailability lignin. Based on the mean annual temperature (MAT) of each elevation (9.3–16.4°C), a temperature increase of 4°C was used to explore how PEs mediate the decomposition of SOC in response to warming. Our results showed that the magnitude of glucose-induced PEs (PE<sub>glucose</sub>) was higher than lignin-induced PEs (PE<sub>lignin</sub>), with both PEs linearly increasing with MAT. Across the MAT (i.e., elevation) gradient, short-term warming had a constant magnitude of negative effects on PE<sub>glucose</sub>, whereas rising MAT exacerbated the negative effects of short-term warming on PE<sub>lignin</sub>. Moreover, the temperature sensitivity of SOC decomposition decreased after adding glucose and lignin across the MAT gradient, suggesting that fresh C inputs may prime the microbial breakdown of labile SOC under warming. Taken together, warming alleviated SOC loss due to PEs through varying mechanisms depending on substrate bioavailability. Warming mediated the PE<sub>glucose</sub> by increasing available nitrogen and weakening microbial nitrogen-mining but inhibited the PE<sub>lignin</sub> by shifting from microbial nitrogen-mining to microbial co-metabolization. Our findings highlight the role of warming in regulating the PEs and suggest that incorporating the suppression effect of warming on PEs can contribute to the accurate prediction of soil C dynamics in a warming world.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 6","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Warming Reduces Priming Effect of Soil Organic Carbon Decomposition Along a Subtropical Elevation Gradient\",\"authors\":\"Xiaojie Li, Maokui Lyu, Qiufang Zhang, Jiguang Feng, Xiaofei Liu, Biao Zhu, Xiaohong Wang, Yusheng Yang, Jinsheng Xie\",\"doi\":\"10.1029/2024GB008113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The priming effects (PEs) of soil organic carbon (SOC) decomposition is a crucial process affecting the C balance of terrestrial ecosystems. However, there is uncertainty about how PEs will respond to climate warming. In this study, we sampled soils along a subtropical elevation gradient in China and conducted a 126-day lab-incubation experiment with and without the addition of <sup>13</sup>C-labeled high-bioavailability glucose or low-bioavailability lignin. Based on the mean annual temperature (MAT) of each elevation (9.3–16.4°C), a temperature increase of 4°C was used to explore how PEs mediate the decomposition of SOC in response to warming. Our results showed that the magnitude of glucose-induced PEs (PE<sub>glucose</sub>) was higher than lignin-induced PEs (PE<sub>lignin</sub>), with both PEs linearly increasing with MAT. Across the MAT (i.e., elevation) gradient, short-term warming had a constant magnitude of negative effects on PE<sub>glucose</sub>, whereas rising MAT exacerbated the negative effects of short-term warming on PE<sub>lignin</sub>. Moreover, the temperature sensitivity of SOC decomposition decreased after adding glucose and lignin across the MAT gradient, suggesting that fresh C inputs may prime the microbial breakdown of labile SOC under warming. Taken together, warming alleviated SOC loss due to PEs through varying mechanisms depending on substrate bioavailability. Warming mediated the PE<sub>glucose</sub> by increasing available nitrogen and weakening microbial nitrogen-mining but inhibited the PE<sub>lignin</sub> by shifting from microbial nitrogen-mining to microbial co-metabolization. Our findings highlight the role of warming in regulating the PEs and suggest that incorporating the suppression effect of warming on PEs can contribute to the accurate prediction of soil C dynamics in a warming world.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 6\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008113\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008113","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
土壤有机碳(SOC)分解的启动效应(PEs)是影响陆地生态系统碳平衡的关键过程。然而,土壤有机碳分解对气候变暖的响应尚不确定。在本研究中,我们沿中国亚热带海拔梯度对土壤进行了取样,并在添加和不添加 13C 标记的高生物利用率葡萄糖或低生物利用率木质素的情况下进行了为期 126 天的实验室培养实验。根据每个海拔高度的年平均气温(9.3-16.4°C),我们采用升温 4°C 的方法来探讨 PE 如何在气候变暖时介导 SOC 的分解。我们的结果表明,葡萄糖诱导的 PEs(PEglucose)比木质素诱导的 PEs(PElignin)高,两种 PEs 都随 MAT 线性增加。在 MAT(即海拔高度)梯度上,短期升温对 PEglucose 的负面影响大小不变,而 MAT 升高则加剧了短期升温对 PElignin 的负面影响。此外,加入葡萄糖和木质素后,SOC 分解的温度敏感性在整个 MAT 梯度上都有所下降,这表明在气候变暖的情况下,新鲜 C 输入可能会加速微生物对易变 SOC 的分解。综上所述,升温可通过不同的机制(取决于底物的生物利用率)缓解 PE 导致的 SOC 损失。气候变暖通过增加可利用氮和削弱微生物的采氮作用来介导聚乙烯葡萄糖,但通过从微生物采氮转向微生物协同代谢来抑制聚乙烯木质素。我们的研究结果突显了气候变暖在调节 PEs 方面的作用,并表明将气候变暖对 PEs 的抑制作用纳入其中有助于准确预测气候变暖世界中的土壤碳动态。
Warming Reduces Priming Effect of Soil Organic Carbon Decomposition Along a Subtropical Elevation Gradient
The priming effects (PEs) of soil organic carbon (SOC) decomposition is a crucial process affecting the C balance of terrestrial ecosystems. However, there is uncertainty about how PEs will respond to climate warming. In this study, we sampled soils along a subtropical elevation gradient in China and conducted a 126-day lab-incubation experiment with and without the addition of 13C-labeled high-bioavailability glucose or low-bioavailability lignin. Based on the mean annual temperature (MAT) of each elevation (9.3–16.4°C), a temperature increase of 4°C was used to explore how PEs mediate the decomposition of SOC in response to warming. Our results showed that the magnitude of glucose-induced PEs (PEglucose) was higher than lignin-induced PEs (PElignin), with both PEs linearly increasing with MAT. Across the MAT (i.e., elevation) gradient, short-term warming had a constant magnitude of negative effects on PEglucose, whereas rising MAT exacerbated the negative effects of short-term warming on PElignin. Moreover, the temperature sensitivity of SOC decomposition decreased after adding glucose and lignin across the MAT gradient, suggesting that fresh C inputs may prime the microbial breakdown of labile SOC under warming. Taken together, warming alleviated SOC loss due to PEs through varying mechanisms depending on substrate bioavailability. Warming mediated the PEglucose by increasing available nitrogen and weakening microbial nitrogen-mining but inhibited the PElignin by shifting from microbial nitrogen-mining to microbial co-metabolization. Our findings highlight the role of warming in regulating the PEs and suggest that incorporating the suppression effect of warming on PEs can contribute to the accurate prediction of soil C dynamics in a warming world.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.