Xinwei Yuan, Haoyun Zhang, Yu Wang, Di Wu, Ihsanullah Shirani, Yingyu Chen, Jianguo Chen, Xi Chen, Lei Zhang, Huanchun Chen, Changmin Hu, Aizhen Guo
{"title":"瘤胃病毒特有合成基因的开发及其在天然感染牛与接种减毒羊痘疫苗牛血清学区分中的应用","authors":"Xinwei Yuan, Haoyun Zhang, Yu Wang, Di Wu, Ihsanullah Shirani, Yingyu Chen, Jianguo Chen, Xi Chen, Lei Zhang, Huanchun Chen, Changmin Hu, Aizhen Guo","doi":"10.1155/2024/7800855","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Lumpy skin disease (LSD) is an important infectious disease caused by lumpy skin disease virus (LSDV) in bovine. LSDV, sheep pox virus (SPPV), and goat pox virus (GTPV) from the same genus <i>Capripoxvirus</i> (CaPV) of the <i>Poxviridae</i> family exhibit a nucleotide sequence similarity of up to 97%. Therefore, attenuated vaccines of GTPV and SPPV are often used to vaccinate cattle against LSD. However, available serological testing methods cannot accurately differentiate cattle vaccinated with GTPV from those infected with LSDV, posing a significant risk for disease spread. In this study, we developed a synthesized gene unique to LSDV as a differential antigen to detect serum antibodies specific to LSDV and differentiate naturally infected from vaccinated animals (DIVA). We used it for an in-house indirect enzyme-linked immunosorbent assay (iELISA), and no cross-reaction with positive sera for bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitis virus (IBRV), <i>Mycobacterium bovis</i> (<i>M. Tb</i>), <i>Pasteurella multocida</i> (<i>P. multocida</i>), and <i>Mycoplasma bovis</i> (<i>M</i>. <i>bovis</i>). The cut-off value (<i>S</i>/<i>P</i>%) was 30% for in-house iELISA. The corresponding diagnostic specificity was 100% (95% CI: 88.43–100), and the diagnostic sensitivity was 93.3% (95% CI: 77.93–99.18). The intra-assay coefficient of variation (CV) ranged from 1.08% to 4.11%, and the interassay CV was 0.00%–8.90%. Furthermore, 200 clinical serum samples were examined, in the vaccinated herd, there were no positive samples (0/141) indicating the strong differentiation ability of this method. On the other hand, in the infected herds, the overall positivity was 33.90% (20/59) (95% CI: 22.08–47.39). In summary, a valuable synthesized protein unique to LSDV was developed and showed a promising application in an iELISA with high specificity and sensitivity in differentiating cattle infected with LSDV from those vaccinated with GTPV.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7800855","citationCount":"0","resultStr":"{\"title\":\"Development of a Synthesized Gene Unique to Lumpy Skin Disease Virus and Its Application in Serological Differentiation of Naturally Infected from Vaccinated Cattle with Attenuated Goat Pox Vaccine\",\"authors\":\"Xinwei Yuan, Haoyun Zhang, Yu Wang, Di Wu, Ihsanullah Shirani, Yingyu Chen, Jianguo Chen, Xi Chen, Lei Zhang, Huanchun Chen, Changmin Hu, Aizhen Guo\",\"doi\":\"10.1155/2024/7800855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Lumpy skin disease (LSD) is an important infectious disease caused by lumpy skin disease virus (LSDV) in bovine. LSDV, sheep pox virus (SPPV), and goat pox virus (GTPV) from the same genus <i>Capripoxvirus</i> (CaPV) of the <i>Poxviridae</i> family exhibit a nucleotide sequence similarity of up to 97%. Therefore, attenuated vaccines of GTPV and SPPV are often used to vaccinate cattle against LSD. However, available serological testing methods cannot accurately differentiate cattle vaccinated with GTPV from those infected with LSDV, posing a significant risk for disease spread. In this study, we developed a synthesized gene unique to LSDV as a differential antigen to detect serum antibodies specific to LSDV and differentiate naturally infected from vaccinated animals (DIVA). We used it for an in-house indirect enzyme-linked immunosorbent assay (iELISA), and no cross-reaction with positive sera for bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitis virus (IBRV), <i>Mycobacterium bovis</i> (<i>M. Tb</i>), <i>Pasteurella multocida</i> (<i>P. multocida</i>), and <i>Mycoplasma bovis</i> (<i>M</i>. <i>bovis</i>). The cut-off value (<i>S</i>/<i>P</i>%) was 30% for in-house iELISA. The corresponding diagnostic specificity was 100% (95% CI: 88.43–100), and the diagnostic sensitivity was 93.3% (95% CI: 77.93–99.18). The intra-assay coefficient of variation (CV) ranged from 1.08% to 4.11%, and the interassay CV was 0.00%–8.90%. Furthermore, 200 clinical serum samples were examined, in the vaccinated herd, there were no positive samples (0/141) indicating the strong differentiation ability of this method. On the other hand, in the infected herds, the overall positivity was 33.90% (20/59) (95% CI: 22.08–47.39). In summary, a valuable synthesized protein unique to LSDV was developed and showed a promising application in an iELISA with high specificity and sensitivity in differentiating cattle infected with LSDV from those vaccinated with GTPV.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7800855\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7800855\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7800855","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Development of a Synthesized Gene Unique to Lumpy Skin Disease Virus and Its Application in Serological Differentiation of Naturally Infected from Vaccinated Cattle with Attenuated Goat Pox Vaccine
Lumpy skin disease (LSD) is an important infectious disease caused by lumpy skin disease virus (LSDV) in bovine. LSDV, sheep pox virus (SPPV), and goat pox virus (GTPV) from the same genus Capripoxvirus (CaPV) of the Poxviridae family exhibit a nucleotide sequence similarity of up to 97%. Therefore, attenuated vaccines of GTPV and SPPV are often used to vaccinate cattle against LSD. However, available serological testing methods cannot accurately differentiate cattle vaccinated with GTPV from those infected with LSDV, posing a significant risk for disease spread. In this study, we developed a synthesized gene unique to LSDV as a differential antigen to detect serum antibodies specific to LSDV and differentiate naturally infected from vaccinated animals (DIVA). We used it for an in-house indirect enzyme-linked immunosorbent assay (iELISA), and no cross-reaction with positive sera for bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitis virus (IBRV), Mycobacterium bovis (M. Tb), Pasteurella multocida (P. multocida), and Mycoplasma bovis (M. bovis). The cut-off value (S/P%) was 30% for in-house iELISA. The corresponding diagnostic specificity was 100% (95% CI: 88.43–100), and the diagnostic sensitivity was 93.3% (95% CI: 77.93–99.18). The intra-assay coefficient of variation (CV) ranged from 1.08% to 4.11%, and the interassay CV was 0.00%–8.90%. Furthermore, 200 clinical serum samples were examined, in the vaccinated herd, there were no positive samples (0/141) indicating the strong differentiation ability of this method. On the other hand, in the infected herds, the overall positivity was 33.90% (20/59) (95% CI: 22.08–47.39). In summary, a valuable synthesized protein unique to LSDV was developed and showed a promising application in an iELISA with high specificity and sensitivity in differentiating cattle infected with LSDV from those vaccinated with GTPV.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.