Rose Chinly Mae H. Ortega-Kindica, Chinee S. Padasas-Adalla, Sharon Rose M. Tabugo, Joey Genevieve T. Martinez, Olive A. Amparado, Carlo Stephen O. Moneva, Rodelyn Dalayap, Carlos O. Lomeli-Ortega, Jose Luis Balcazar
{"title":"射枪元基因组学揭示了与巴尔伯海马(Hippocampus barbouri)相关的微生物组的分类和功能模式。","authors":"Rose Chinly Mae H. Ortega-Kindica, Chinee S. Padasas-Adalla, Sharon Rose M. Tabugo, Joey Genevieve T. Martinez, Olive A. Amparado, Carlo Stephen O. Moneva, Rodelyn Dalayap, Carlos O. Lomeli-Ortega, Jose Luis Balcazar","doi":"10.1007/s10126-024-10330-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour’s seahorse (<i>Hippocampus barbouri</i>) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour’s seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shotgun Metagenomics Reveals Taxonomic and Functional Patterns of the Microbiome Associated with Barbour’s Seahorse (Hippocampus barbouri)\",\"authors\":\"Rose Chinly Mae H. Ortega-Kindica, Chinee S. Padasas-Adalla, Sharon Rose M. Tabugo, Joey Genevieve T. Martinez, Olive A. Amparado, Carlo Stephen O. Moneva, Rodelyn Dalayap, Carlos O. Lomeli-Ortega, Jose Luis Balcazar\",\"doi\":\"10.1007/s10126-024-10330-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour’s seahorse (<i>Hippocampus barbouri</i>) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour’s seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10330-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10330-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Shotgun Metagenomics Reveals Taxonomic and Functional Patterns of the Microbiome Associated with Barbour’s Seahorse (Hippocampus barbouri)
This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour’s seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour’s seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.