Diba Shareghi-Boroujeni, Aida Iraji, Mahintaj Dara, Mohammad Hashem Hashempur, Shahrokh Zare, Roshanak Hariri, Tahmineh Akbarzadeh, Mina Saeedi
{"title":"合成新型 1,2,3-三唑-腙混合物:靶向胆碱酯酶和阿尔茨海默氏症相关基因。","authors":"Diba Shareghi-Boroujeni, Aida Iraji, Mahintaj Dara, Mohammad Hashem Hashempur, Shahrokh Zare, Roshanak Hariri, Tahmineh Akbarzadeh, Mina Saeedi","doi":"10.1080/17568919.2024.2359894","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. <b>Materials & methods:</b> All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of <i>GSK-3α</i>, <i>GSK-3β</i>, <i>DYRK1</i> and <i>CDK5</i> were assessed in the presence of compounds <b>6m</b> and <b>6p</b>.<b>Results:6m</b> and <b>6p</b>; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. <b>6m</b> demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, <b>6m</b> displayed a significant downregulation in mRNA levels of <i>GSK-3α</i>, <i>GSK-3β</i> and <i>CDK5</i>.<b>Conclusion:</b> The target compounds could be considered in developing anti-Alzheimer's disease agents.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1519-1535"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of novel hybrids of 1,2,3-triazoles-hydrazone: targeting cholinesterases and Alzheimer's related genes.\",\"authors\":\"Diba Shareghi-Boroujeni, Aida Iraji, Mahintaj Dara, Mohammad Hashem Hashempur, Shahrokh Zare, Roshanak Hariri, Tahmineh Akbarzadeh, Mina Saeedi\",\"doi\":\"10.1080/17568919.2024.2359894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. <b>Materials & methods:</b> All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of <i>GSK-3α</i>, <i>GSK-3β</i>, <i>DYRK1</i> and <i>CDK5</i> were assessed in the presence of compounds <b>6m</b> and <b>6p</b>.<b>Results:6m</b> and <b>6p</b>; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. <b>6m</b> demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, <b>6m</b> displayed a significant downregulation in mRNA levels of <i>GSK-3α</i>, <i>GSK-3β</i> and <i>CDK5</i>.<b>Conclusion:</b> The target compounds could be considered in developing anti-Alzheimer's disease agents.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1519-1535\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2359894\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2359894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis of novel hybrids of 1,2,3-triazoles-hydrazone: targeting cholinesterases and Alzheimer's related genes.
Aim: A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. Materials & methods: All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of GSK-3α, GSK-3β, DYRK1 and CDK5 were assessed in the presence of compounds 6m and 6p.Results:6m and 6p; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. 6m demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, 6m displayed a significant downregulation in mRNA levels of GSK-3α, GSK-3β and CDK5.Conclusion: The target compounds could be considered in developing anti-Alzheimer's disease agents.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.