检测囊性纤维化患者肺部标本中的致病菌和生物标记物。

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of breath research Pub Date : 2024-07-16 DOI:10.1088/1752-7163/ad56bc
James J Tolle, Samadhan Jadhao, Brijesh Patel, Heying Sun, Susan Eastman, Tina Hartert, David N Ku, Larry J Anderson
{"title":"检测囊性纤维化患者肺部标本中的致病菌和生物标记物。","authors":"James J Tolle, Samadhan Jadhao, Brijesh Patel, Heying Sun, Susan Eastman, Tina Hartert, David N Ku, Larry J Anderson","doi":"10.1088/1752-7163/ad56bc","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosing lung infections is often challenging because of the lack of a high-quality specimen from the diseased lung. Since persons with cystic fibrosis are subject to chronic lung infection, there is frequently a need for a lung specimen. In this small, proof of principle study, we determined that PneumoniaCheck<sup>TM</sup>, a non-invasive device that captures coughed droplets from the lung on a filter, might help meet this need. We obtained 10 PneumoniaCheck<sup>TM</sup>coughed specimens and 2 sputum specimens from adult CF patients hospitalized with an exacerbation of their illness. We detected amylase (upper respiratory tract) with an enzymatic assay, surfactant A (lower respiratory tract) with an immunoassay, pathogenic bacteria by PCR, and markers of inflammation by a Luminex multiplex immunoassay. The amylase and surfactant A levels suggested that 9/10 coughed specimens were from lower respiratory tract with minimal upper respiratory contamination. The PCR assays detected pathogenic bacteria in 7 of 9 specimens and multiplex Luminex assay detected a variety of cytokines or chemokines. These data indicate that the PneumoniaCheck<sup>TM</sup>coughed specimens can capture good quality lower respiratory tract specimens that have the potential to help in diagnosis, management and understanding of CF exacerbations and other lung disease.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of pathogenic bacteria and biomarkers in lung specimens from cystic fibrosis patients.\",\"authors\":\"James J Tolle, Samadhan Jadhao, Brijesh Patel, Heying Sun, Susan Eastman, Tina Hartert, David N Ku, Larry J Anderson\",\"doi\":\"10.1088/1752-7163/ad56bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diagnosing lung infections is often challenging because of the lack of a high-quality specimen from the diseased lung. Since persons with cystic fibrosis are subject to chronic lung infection, there is frequently a need for a lung specimen. In this small, proof of principle study, we determined that PneumoniaCheck<sup>TM</sup>, a non-invasive device that captures coughed droplets from the lung on a filter, might help meet this need. We obtained 10 PneumoniaCheck<sup>TM</sup>coughed specimens and 2 sputum specimens from adult CF patients hospitalized with an exacerbation of their illness. We detected amylase (upper respiratory tract) with an enzymatic assay, surfactant A (lower respiratory tract) with an immunoassay, pathogenic bacteria by PCR, and markers of inflammation by a Luminex multiplex immunoassay. The amylase and surfactant A levels suggested that 9/10 coughed specimens were from lower respiratory tract with minimal upper respiratory contamination. The PCR assays detected pathogenic bacteria in 7 of 9 specimens and multiplex Luminex assay detected a variety of cytokines or chemokines. These data indicate that the PneumoniaCheck<sup>TM</sup>coughed specimens can capture good quality lower respiratory tract specimens that have the potential to help in diagnosis, management and understanding of CF exacerbations and other lung disease.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad56bc\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad56bc","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏高质量的病肺标本,诊断肺部感染往往具有挑战性。由于囊性纤维化患者会受到慢性肺部感染,因此经常需要肺部标本。在这项小型原理验证研究中,我们确定 PneumoniaCheckTM 是一种非侵入性设备,可通过过滤器捕捉肺部咳出的液滴,从而帮助满足这一需求。我们从因病情加重而住院的成年 CF 患者身上获取了 10 份 PneumoniaCheckTM 咳嗽标本和 2 份痰标本。我们用酶法检测了淀粉酶(上呼吸道),用免疫测定法检测了表面活性物质 A(下呼吸道),用 PCR 检测了致病菌,用 Luminex 多重免疫测定法检测了炎症标记物。淀粉酶和表面活性物质 A 水平表明,9/10 的咳嗽标本来自下呼吸道,上呼吸道污染极少。PCR 检测在 9 份标本中的 7 份中检测到了病原菌,而多重 Luminex 检测则检测到了多种细胞因子或趋化因子。这些数据表明,PneumoniaCheckTM 咳嗽标本能采集到高质量的下呼吸道标本,有可能帮助诊断、管理和了解 CF 恶化和其他肺部疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of pathogenic bacteria and biomarkers in lung specimens from cystic fibrosis patients.

Diagnosing lung infections is often challenging because of the lack of a high-quality specimen from the diseased lung. Since persons with cystic fibrosis are subject to chronic lung infection, there is frequently a need for a lung specimen. In this small, proof of principle study, we determined that PneumoniaCheckTM, a non-invasive device that captures coughed droplets from the lung on a filter, might help meet this need. We obtained 10 PneumoniaCheckTMcoughed specimens and 2 sputum specimens from adult CF patients hospitalized with an exacerbation of their illness. We detected amylase (upper respiratory tract) with an enzymatic assay, surfactant A (lower respiratory tract) with an immunoassay, pathogenic bacteria by PCR, and markers of inflammation by a Luminex multiplex immunoassay. The amylase and surfactant A levels suggested that 9/10 coughed specimens were from lower respiratory tract with minimal upper respiratory contamination. The PCR assays detected pathogenic bacteria in 7 of 9 specimens and multiplex Luminex assay detected a variety of cytokines or chemokines. These data indicate that the PneumoniaCheckTMcoughed specimens can capture good quality lower respiratory tract specimens that have the potential to help in diagnosis, management and understanding of CF exacerbations and other lung disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
期刊最新文献
Correlations between Propofol Concentration in Exhaled Breath and BIS in Patients undergoing Thyroid Surgery. Halitosis in oral lichen planus patients. Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry. Therapeutic efficacy of a probiotic preparation on idiopathic halitosis: a retrospective observational study. Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1