调查空间尺度对社会脆弱性指数的影响:结合遥感土地覆被数据的混合不确定性和敏感性分析方法。

IF 3 3区 医学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Risk Analysis Pub Date : 2024-11-01 Epub Date: 2024-06-11 DOI:10.1111/risa.14342
Bowen He, Qun Guan
{"title":"调查空间尺度对社会脆弱性指数的影响:结合遥感土地覆被数据的混合不确定性和敏感性分析方法。","authors":"Bowen He, Qun Guan","doi":"10.1111/risa.14342","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating the effects of spatial scales on the uncertainty and sensitivity analysis of the social vulnerability index (SoVI) model output is critical, especially for spatial scales finer than the census block group or census block. This study applied the intelligent dasymetric mapping approach to spatially disaggregate the census tract scale SoVI model into a 300-m grids resolution SoVI map in Davidson County, Nashville. Then, uncertainty analysis and variance-based global sensitivity analysis were conducted on two scales of SoVI models: (a) census tract scale; (b) 300-m grids scale. Uncertainty analysis results indicate that the SoVI model has better confidence in identifying places with a higher socially vulnerable status, no matter the spatial scales in which the SoVI is constructed. However, the spatial scale of SoVI does affect the sensitivity analysis results. The sensitivity analysis suggests that for census tract scale SoVI, the indicator transformation and weighting scheme are the two major uncertainty contributors in the SoVI index modeling stages. While for finer spatial scales like the 300-m grid's resolution, the weighting scheme becomes the uttermost dominant uncertainty contributor, absorbing uncertainty contributions from indicator transformation.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":" ","pages":"2723-2739"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effects of spatial scales on social vulnerability index: A hybrid uncertainty and sensitivity analysis approach combined with remote sensing land cover data.\",\"authors\":\"Bowen He, Qun Guan\",\"doi\":\"10.1111/risa.14342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Investigating the effects of spatial scales on the uncertainty and sensitivity analysis of the social vulnerability index (SoVI) model output is critical, especially for spatial scales finer than the census block group or census block. This study applied the intelligent dasymetric mapping approach to spatially disaggregate the census tract scale SoVI model into a 300-m grids resolution SoVI map in Davidson County, Nashville. Then, uncertainty analysis and variance-based global sensitivity analysis were conducted on two scales of SoVI models: (a) census tract scale; (b) 300-m grids scale. Uncertainty analysis results indicate that the SoVI model has better confidence in identifying places with a higher socially vulnerable status, no matter the spatial scales in which the SoVI is constructed. However, the spatial scale of SoVI does affect the sensitivity analysis results. The sensitivity analysis suggests that for census tract scale SoVI, the indicator transformation and weighting scheme are the two major uncertainty contributors in the SoVI index modeling stages. While for finer spatial scales like the 300-m grid's resolution, the weighting scheme becomes the uttermost dominant uncertainty contributor, absorbing uncertainty contributions from indicator transformation.</p>\",\"PeriodicalId\":21472,\"journal\":{\"name\":\"Risk Analysis\",\"volume\":\" \",\"pages\":\"2723-2739\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/risa.14342\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.14342","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

调查空间尺度对社会脆弱性指数(SoVI)模型输出的不确定性和敏感性分析的影响至关重要,尤其是对于比普查区组或普查街区更细的空间尺度。本研究采用智能asymetric 绘图方法,将普查区尺度的 SoVI 模型空间分解为纳什维尔戴维森县 300 米网格分辨率的 SoVI 地图。然后,对两种尺度的 SoVI 模型进行了不确定性分析和基于方差的全局敏感性分析:(a)普查区尺度;(b)300 米网格尺度。不确定性分析结果表明,无论构建 SoVI 的空间尺度如何,SoVI 模型都能更好地识别社会弱势地位较高的地方。不过,SoVI 的空间尺度确实会影响敏感性分析结果。敏感性分析表明,对于普查区尺度的 SoVI,指标转换和加权方案是 SoVI 指数建模阶段的两个主要不确定因素。而对于更精细的空间尺度(如 300 米网格分辨率),加权方案成为最主要的不确定性因素,吸收了指标转换带来的不确定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the effects of spatial scales on social vulnerability index: A hybrid uncertainty and sensitivity analysis approach combined with remote sensing land cover data.

Investigating the effects of spatial scales on the uncertainty and sensitivity analysis of the social vulnerability index (SoVI) model output is critical, especially for spatial scales finer than the census block group or census block. This study applied the intelligent dasymetric mapping approach to spatially disaggregate the census tract scale SoVI model into a 300-m grids resolution SoVI map in Davidson County, Nashville. Then, uncertainty analysis and variance-based global sensitivity analysis were conducted on two scales of SoVI models: (a) census tract scale; (b) 300-m grids scale. Uncertainty analysis results indicate that the SoVI model has better confidence in identifying places with a higher socially vulnerable status, no matter the spatial scales in which the SoVI is constructed. However, the spatial scale of SoVI does affect the sensitivity analysis results. The sensitivity analysis suggests that for census tract scale SoVI, the indicator transformation and weighting scheme are the two major uncertainty contributors in the SoVI index modeling stages. While for finer spatial scales like the 300-m grid's resolution, the weighting scheme becomes the uttermost dominant uncertainty contributor, absorbing uncertainty contributions from indicator transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Risk Analysis
Risk Analysis 数学-数学跨学科应用
CiteScore
7.50
自引率
10.50%
发文量
183
审稿时长
4.2 months
期刊介绍: Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include: • Human health and safety risks • Microbial risks • Engineering • Mathematical modeling • Risk characterization • Risk communication • Risk management and decision-making • Risk perception, acceptability, and ethics • Laws and regulatory policy • Ecological risks.
期刊最新文献
A review of optimization and decision models of prescribed burning for wildfire management. An information-theoretic analysis of security behavior intentions amongst United States poll workers. JointLIME: An interpretation method for machine learning survival models with endogenous time-varying covariates in credit scoring. Portrayal of risk information and its impact on audiences' risk perception during the Covid-19 pandemic: A multi-method approach. A quantitative analysis of biosafety and biosecurity using attack trees in low-to-moderate risk scenarios: Evidence from iGEM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1