虚拟非对比图像在对比增强双能 CT 中显示痛风性骨赘:一项模型研究。

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-06-12 DOI:10.1186/s41747-024-00466-w
Karim Khayata, Torsten Diekhoff, Jürgen Mews, Sydney Schmolke, Maximilian Kotlyarov
{"title":"虚拟非对比图像在对比增强双能 CT 中显示痛风性骨赘:一项模型研究。","authors":"Karim Khayata, Torsten Diekhoff, Jürgen Mews, Sydney Schmolke, Maximilian Kotlyarov","doi":"10.1186/s41747-024-00466-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dual-energy computed tomography (DECT) is useful for detecting gouty tophi. While iodinated contrast media (ICM) might enhance the detection of monosodium urate crystals (MSU), higher iodine concentrations hamper their detection. Calculating virtual noncontrast (VNC) images might improve the detection of enhancing tophi. The aim of this study was to evaluate MSU detection with VNC images from DECT acquisitions in phantoms, compared against the results with standard DECT reconstructions.</p><p><strong>Methods: </strong>A grid-like and a biophantom with 25 suspensions containing different concentrations of ICM (0 to 2%) and MSU (0 to 50%) were scanned with sequential single-source DECT using an ascending order of tube current time product at 80 kVp (16.5-220 mAs) and 135 kVp (2.75-19.25 mAs). VNC images were equivalently reconstructed at 80 and 135 kVp. Two-material decomposition analysis for MSU detection was applied for the VNC and conventional CT images. MSU detection and attenuation values were compared in both modalities.</p><p><strong>Results: </strong>For 0, 0.25, 0.5, 1, and 2% ICM, the average detection indices (DIs) for all MSU concentrations (35-50%) with VNC postprocessing were respectively 25.2, 36.6, 30.9, 38.9, and 45.8% for the grid phantom scans and 11.7, 9.4, 5.5, 24.0, and 25.0% for the porcine phantom scans. In the conventional CT image group, the average DIs were respectively 35.4, 54.3, 45.4, 1.0, and 0.0% for the grid phantom and 19.4, 17.9, 3.0, 0.0, and 0.0% for the porcine phantom scans.</p><p><strong>Conclusions: </strong>VNC effectively reduces the suppression of information caused by high concentrations of ICM, thereby improving the detection of MSU.</p><p><strong>Relevance statement: </strong>Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.</p><p><strong>Key points: </strong>• Highly concentrated contrast media hinders monosodium urate crystal detection in CT imaging • Virtual noncontrast imaging redetects monosodium urate crystals in high-iodinated contrast media concentrations. • Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virtual noncontrast images reveal gouty tophi in contrast-enhanced dual-energy CT: a phantom study.\",\"authors\":\"Karim Khayata, Torsten Diekhoff, Jürgen Mews, Sydney Schmolke, Maximilian Kotlyarov\",\"doi\":\"10.1186/s41747-024-00466-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dual-energy computed tomography (DECT) is useful for detecting gouty tophi. While iodinated contrast media (ICM) might enhance the detection of monosodium urate crystals (MSU), higher iodine concentrations hamper their detection. Calculating virtual noncontrast (VNC) images might improve the detection of enhancing tophi. The aim of this study was to evaluate MSU detection with VNC images from DECT acquisitions in phantoms, compared against the results with standard DECT reconstructions.</p><p><strong>Methods: </strong>A grid-like and a biophantom with 25 suspensions containing different concentrations of ICM (0 to 2%) and MSU (0 to 50%) were scanned with sequential single-source DECT using an ascending order of tube current time product at 80 kVp (16.5-220 mAs) and 135 kVp (2.75-19.25 mAs). VNC images were equivalently reconstructed at 80 and 135 kVp. Two-material decomposition analysis for MSU detection was applied for the VNC and conventional CT images. MSU detection and attenuation values were compared in both modalities.</p><p><strong>Results: </strong>For 0, 0.25, 0.5, 1, and 2% ICM, the average detection indices (DIs) for all MSU concentrations (35-50%) with VNC postprocessing were respectively 25.2, 36.6, 30.9, 38.9, and 45.8% for the grid phantom scans and 11.7, 9.4, 5.5, 24.0, and 25.0% for the porcine phantom scans. In the conventional CT image group, the average DIs were respectively 35.4, 54.3, 45.4, 1.0, and 0.0% for the grid phantom and 19.4, 17.9, 3.0, 0.0, and 0.0% for the porcine phantom scans.</p><p><strong>Conclusions: </strong>VNC effectively reduces the suppression of information caused by high concentrations of ICM, thereby improving the detection of MSU.</p><p><strong>Relevance statement: </strong>Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.</p><p><strong>Key points: </strong>• Highly concentrated contrast media hinders monosodium urate crystal detection in CT imaging • Virtual noncontrast imaging redetects monosodium urate crystals in high-iodinated contrast media concentrations. • Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-024-00466-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00466-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:双能计算机断层扫描(DECT)有助于检测痛风性结石。虽然碘化造影剂(ICM)可增强对单钠尿酸盐结晶(MSU)的检测,但较高的碘浓度会妨碍对其检测。计算虚拟非对比度(VNC)图像可提高对增强型鹅口疮的检测。本研究的目的是评估利用模型中 DECT 采集的 VNC 图像检测 MSU 的效果,并与标准 DECT 重建的结果进行比较:方法:在 80 kVp(16.5-220 mAs)和 135 kVp(2.75-19.25 mAs)电压下,使用升序管电流时间积对一个网格状和一个含有 25 个不同浓度 ICM(0-2%)和 MSU(0-50%)悬浮液的生物模型进行连续单源 DECT 扫描。VNC 图像在 80 和 135 kVp 下进行了等效重建。对 VNC 和传统 CT 图像进行了用于 MSU 检测的双材料分解分析。对两种模式的 MSU 检测和衰减值进行了比较:对于 0%、0.25%、0.5%、1% 和 2% 的 ICM,使用 VNC 后处理的所有 MSU 浓度(35%-50%)的平均检测指数(DIs)分别为:网格模型扫描为 25.2%、36.6%、30.9%、38.9% 和 45.8%;猪模型扫描为 11.7%、9.4%、5.5%、24.0% 和 25.0%。在传统 CT 图像组中,网格模型扫描的平均 DI 分别为 35.4%、54.3%、45.4%、1.0% 和 0.0%,猪模型扫描的平均 DI 分别为 19.4%、17.9%、3.0%、0.0% 和 0.0%:结论:VNC 能有效减少高浓度 ICM 对信息的抑制,从而改善 MSU 的检测:对比度增强 DECT 可用于诊断痛风,而无需进行原始采集:- 高浓度造影剂阻碍了 CT 成像对单钠尿酸盐晶体的检测--虚拟非对比造影可重新检测出高浓度碘化造影剂中的单钠尿酸盐晶体。- 仅对比度增强 DECT 就足以诊断痛风,而无需原始采集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual noncontrast images reveal gouty tophi in contrast-enhanced dual-energy CT: a phantom study.

Background: Dual-energy computed tomography (DECT) is useful for detecting gouty tophi. While iodinated contrast media (ICM) might enhance the detection of monosodium urate crystals (MSU), higher iodine concentrations hamper their detection. Calculating virtual noncontrast (VNC) images might improve the detection of enhancing tophi. The aim of this study was to evaluate MSU detection with VNC images from DECT acquisitions in phantoms, compared against the results with standard DECT reconstructions.

Methods: A grid-like and a biophantom with 25 suspensions containing different concentrations of ICM (0 to 2%) and MSU (0 to 50%) were scanned with sequential single-source DECT using an ascending order of tube current time product at 80 kVp (16.5-220 mAs) and 135 kVp (2.75-19.25 mAs). VNC images were equivalently reconstructed at 80 and 135 kVp. Two-material decomposition analysis for MSU detection was applied for the VNC and conventional CT images. MSU detection and attenuation values were compared in both modalities.

Results: For 0, 0.25, 0.5, 1, and 2% ICM, the average detection indices (DIs) for all MSU concentrations (35-50%) with VNC postprocessing were respectively 25.2, 36.6, 30.9, 38.9, and 45.8% for the grid phantom scans and 11.7, 9.4, 5.5, 24.0, and 25.0% for the porcine phantom scans. In the conventional CT image group, the average DIs were respectively 35.4, 54.3, 45.4, 1.0, and 0.0% for the grid phantom and 19.4, 17.9, 3.0, 0.0, and 0.0% for the porcine phantom scans.

Conclusions: VNC effectively reduces the suppression of information caused by high concentrations of ICM, thereby improving the detection of MSU.

Relevance statement: Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.

Key points: • Highly concentrated contrast media hinders monosodium urate crystal detection in CT imaging • Virtual noncontrast imaging redetects monosodium urate crystals in high-iodinated contrast media concentrations. • Contrast-enhanced DECT alone may suffice for diagnosing gout without a native acquisition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
Dark-field radiography for the detection of bone microstructure changes in osteoporotic human lumbar spine specimens. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Deep learning-based segmentation of kidneys and renal cysts on T2-weighted MRI from patients with autosomal dominant polycystic kidney disease. Probing clarity: AI-generated simplified breast imaging reports for enhanced patient comprehension powered by ChatGPT-4o. Transfer learning classification of suspicious lesions on breast ultrasound: is there room to avoid biopsies of benign lesions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1