MorphBungee:具有片上 802 帧/秒多层尖峰神经网络学习功能的 65 纳米 7.2 mm2 27-μJ/image 数字边缘神经形态芯片。

Tengxiao Wang, Min Tian, Haibing Wang, Zhengqing Zhong, Junxian He, Fang Tang, Xichuan Zhou, Yingcheng Lin, Shuang-Ming Yu, Liyuan Liu, Cong Shi
{"title":"MorphBungee:具有片上 802 帧/秒多层尖峰神经网络学习功能的 65 纳米 7.2 mm2 27-μJ/image 数字边缘神经形态芯片。","authors":"Tengxiao Wang, Min Tian, Haibing Wang, Zhengqing Zhong, Junxian He, Fang Tang, Xichuan Zhou, Yingcheng Lin, Shuang-Ming Yu, Liyuan Liu, Cong Shi","doi":"10.1109/TBCAS.2024.3412908","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm<sup>2</sup> was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MorphBungee: A 65-nm 7.2-mm<sup>2</sup> 27-μJ/image Digital Edge Neuromorphic Chip with On-Chip 802-frame/s Multi-Layer Spiking Neural Network Learning.\",\"authors\":\"Tengxiao Wang, Min Tian, Haibing Wang, Zhengqing Zhong, Junxian He, Fang Tang, Xichuan Zhou, Yingcheng Lin, Shuang-Ming Yu, Liyuan Liu, Cong Shi\",\"doi\":\"10.1109/TBCAS.2024.3412908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm<sup>2</sup> was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3412908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3412908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种数字边缘神经形态尖峰神经网络(SNN)处理器芯片,适用于各种边缘智能认知应用。该处理器可实现高速、高精度和基于尖峰计时的多层 SNN 学习。它具有分层多核架构、事件驱动处理模式、用于高效尖峰通信的元交叉条以及混合和可重构并行性等特点。当在缩小的 16 × 16 MNIST 图像上运行 256-256-256-256-200 4 层全连接 SNN 时,片上学习和推理的高速吞吐量通常分别达到 802 帧/秒和 2270 帧/秒,而功耗相对较低,在 100 MHz 时钟频率和 1.我们的片上学习在 MNIST、Fashion-MNIST、ETH-80、Yale-10 和 ORL-10 数据集上分别实现了 96.06%、83.38%、84.53%、99.22% 和 100% 的视觉识别准确率。此外,我们还成功应用神经形态芯片演示了高分辨率卫星云图分割和非视觉任务,包括嗅觉分类和纹理新闻分类。这些结果表明,我们的神经形态芯片适用于成本、能耗和延迟预算受限的各种智能边缘系统,同时需要原位自适应学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MorphBungee: A 65-nm 7.2-mm2 27-μJ/image Digital Edge Neuromorphic Chip with On-Chip 802-frame/s Multi-Layer Spiking Neural Network Learning.

This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm2 was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1