R2D2-GAN:用于显微镜高光谱图像超分辨率的鲁棒双判别生成对抗网络。

Jiaxuan Liu, Hui Zhang, Jiang-Huai Tian, Yingjian Su, Yurong Chen, Yaonan Wang
{"title":"R2D2-GAN:用于显微镜高光谱图像超分辨率的鲁棒双判别生成对抗网络。","authors":"Jiaxuan Liu, Hui Zhang, Jiang-Huai Tian, Yingjian Su, Yurong Chen, Yaonan Wang","doi":"10.1109/TMI.2024.3412033","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution.\",\"authors\":\"Jiaxuan Liu, Hui Zhang, Jiang-Huai Tian, Yingjian Su, Yurong Chen, Yaonan Wang\",\"doi\":\"10.1109/TMI.2024.3412033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3412033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3412033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率显微镜高光谱(HS)图像可提供高度详细的空间和光谱信息,从而能够在微观层面识别和分析生物组织。最近,人们致力于利用高空间分辨率多光谱(MS)图像来提高 HS 图像的分辨率。然而,固有的硬件限制导致 HS 和 MS 图像之间存在明显的分布差距,给生物医学领域的图像超分辨率带来了挑战。这种差异可能由多种因素造成,包括相机成像原理(如快照和推扫帚成像)、拍摄位置和噪声干扰的不同。为了应对这些挑战,我们引入了一种名为 R2D2-GAN 的独特无监督超分辨率框架。该框架利用生成式对抗网络 (GAN) 有效地合并两种数据模式,提高显微 HS 图像的分辨率。传统的监督方法依赖于直观而敏感的损失函数,如均值平方误差 (MSE)。我们的方法是在真实世界的无监督环境中训练出来的,可利用两种模式的一致信息。它采用了博弈论策略和动态对抗损失,而不是仅仅依赖固定的重建损失训练策略。此外,我们还利用中央一致性正则化(CCR)模块增强了我们提出的模型,旨在进一步提高 R2D2-GAN 的鲁棒性。我们的实验结果表明,所提出的方法对于超分辨率图像来说既准确又稳健。我们特别在真实数据集和合成数据集上测试了我们提出的方法,与其他最先进的方法相比,取得了令人满意的结果。我们的代码和数据集可通过多媒体内容访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R2D2-GAN: Robust Dual Discriminator Generative Adversarial Network for Microscopy Hyperspectral Image Super-Resolution.

High-resolution microscopy hyperspectral (HS) images can provide highly detailed spatial and spectral information, enabling the identification and analysis of biological tissues at a microscale level. Recently, significant efforts have been devoted to enhancing the resolution of HS images by leveraging high spatial resolution multispectral (MS) images. However, the inherent hardware constraints lead to a significant distribution gap between HS and MS images, posing challenges for image super-resolution within biomedical domains. This discrepancy may arise from various factors, including variations in camera imaging principles (e.g., snapshot and push-broom imaging), shooting positions, and the presence of noise interference. To address these challenges, we introduced a unique unsupervised super-resolution framework named R2D2-GAN. This framework utilizes a generative adversarial network (GAN) to efficiently merge the two data modalities and improve the resolution of microscopy HS images. Traditionally, supervised approaches have relied on intuitive and sensitive loss functions, such as mean squared error (MSE). Our method, trained in a real-world unsupervised setting, benefits from exploiting consistent information across the two modalities. It employs a game-theoretic strategy and dynamic adversarial loss, rather than relying solely on fixed training strategies for reconstruction loss. Furthermore, we have augmented our proposed model with a central consistency regularization (CCR) module, aiming to further enhance the robustness of the R2D2-GAN. Our experimental results show that the proposed method is accurate and robust for super-resolution images. We specifically tested our proposed method on both a real and a synthetic dataset, obtaining promising results in comparison to other state-of-the-art methods. Our code and datasets are accessible through Multimedia Content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism. Table of Contents LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1