Syed Muzzamil Hussain Shah, Sani I. Abba, Mohamed A. Yassin, Dahiru U. Lawal, Farouq Aliyu, Ebrahim Hamid Hussein Al-Qadami, Haris U. Qureshi, Isam H. Aljundi, Hamza A. Asmaly, Saad Sh. Sammen, Miklas Scholz
{"title":"基于哈默斯坦因-维纳和监督机器学习的新策略,用于识别沙特阿拉伯哈萨地区经处理的废水盐碱化情况","authors":"Syed Muzzamil Hussain Shah, Sani I. Abba, Mohamed A. Yassin, Dahiru U. Lawal, Farouq Aliyu, Ebrahim Hamid Hussein Al-Qadami, Haris U. Qureshi, Isam H. Aljundi, Hamza A. Asmaly, Saad Sh. Sammen, Miklas Scholz","doi":"10.1186/s12302-024-00914-9","DOIUrl":null,"url":null,"abstract":"<div><p>The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R<sup>2</sup>), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R<sup>2</sup> values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00914-9","citationCount":"0","resultStr":"{\"title\":\"New strategy based on Hammerstein–Wiener and supervised machine learning for identification of treated wastewater salinization in Al-Hassa region, Saudi Arabia\",\"authors\":\"Syed Muzzamil Hussain Shah, Sani I. Abba, Mohamed A. Yassin, Dahiru U. Lawal, Farouq Aliyu, Ebrahim Hamid Hussein Al-Qadami, Haris U. Qureshi, Isam H. Aljundi, Hamza A. Asmaly, Saad Sh. Sammen, Miklas Scholz\",\"doi\":\"10.1186/s12302-024-00914-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R<sup>2</sup>), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R<sup>2</sup> values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00914-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-024-00914-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-00914-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New strategy based on Hammerstein–Wiener and supervised machine learning for identification of treated wastewater salinization in Al-Hassa region, Saudi Arabia
The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R2 values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.