Michele Vacca, Ioannis Kamzolas, Lea Mørch Harder, Fiona Oakley, Christian Trautwein, Maximilian Hatting, Trenton Ross, Barbara Bernardo, Anouk Oldenburger, Sara Toftegaard Hjuler, Iwona Ksiazek, Daniel Lindén, Detlef Schuppan, Sergio Rodriguez-Cuenca, Maria Manuela Tonini, Tamara R. Castañeda, Aimo Kannt, Cecília M. P. Rodrigues, Simon Cockell, Olivier Govaere, Ann K. Daly, Michael Allison, Kristian Honnens de Lichtenberg, Yong Ook Kim, Anna Lindblom, Stephanie Oldham, Anne-Christine Andréasson, Franklin Schlerman, Jonathon Marioneaux, Arun Sanyal, Marta B. Afonso, Ramy Younes, Yuichiro Amano, Scott L. Friedman, Shuang Wang, Dipankar Bhattacharya, Eric Simon, Valérie Paradis, Alastair Burt, Ioanna Maria Grypari, Susan Davies, Ann Driessen, Hiroaki Yashiro, Susanne Pors, Maja Worm Andersen, Michael Feigh, Carla Yunis, Pierre Bedossa, Michelle Stewart, Heather L. Cater, Sara Wells, Jörn M. Schattenberg, Quentin M. Anstee, The LITMUS Investigators, Dina Tiniakos, James W. Perfield, Evangelia Petsalaki, Peter Davidsen, Antonio Vidal-Puig
{"title":"根据与人类代谢功能障碍相关性脂肪性肝病(MASLD)的接近程度对小鼠饮食模型进行无偏见排序","authors":"Michele Vacca, Ioannis Kamzolas, Lea Mørch Harder, Fiona Oakley, Christian Trautwein, Maximilian Hatting, Trenton Ross, Barbara Bernardo, Anouk Oldenburger, Sara Toftegaard Hjuler, Iwona Ksiazek, Daniel Lindén, Detlef Schuppan, Sergio Rodriguez-Cuenca, Maria Manuela Tonini, Tamara R. Castañeda, Aimo Kannt, Cecília M. P. Rodrigues, Simon Cockell, Olivier Govaere, Ann K. Daly, Michael Allison, Kristian Honnens de Lichtenberg, Yong Ook Kim, Anna Lindblom, Stephanie Oldham, Anne-Christine Andréasson, Franklin Schlerman, Jonathon Marioneaux, Arun Sanyal, Marta B. Afonso, Ramy Younes, Yuichiro Amano, Scott L. Friedman, Shuang Wang, Dipankar Bhattacharya, Eric Simon, Valérie Paradis, Alastair Burt, Ioanna Maria Grypari, Susan Davies, Ann Driessen, Hiroaki Yashiro, Susanne Pors, Maja Worm Andersen, Michael Feigh, Carla Yunis, Pierre Bedossa, Michelle Stewart, Heather L. Cater, Sara Wells, Jörn M. Schattenberg, Quentin M. Anstee, The LITMUS Investigators, Dina Tiniakos, James W. Perfield, Evangelia Petsalaki, Peter Davidsen, Antonio Vidal-Puig","doi":"10.1038/s42255-024-01043-6","DOIUrl":null,"url":null,"abstract":"Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD ‘human proximity score’ to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research. The LITMUS consortium provides a resource of rodent MASLD models benchmarked against metabolic, histologic and transcriptomic features that are relevant for human MASLD. The work is useful for selecting relevant rodent models for studying this common disease.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01043-6.pdf","citationCount":"0","resultStr":"{\"title\":\"An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD)\",\"authors\":\"Michele Vacca, Ioannis Kamzolas, Lea Mørch Harder, Fiona Oakley, Christian Trautwein, Maximilian Hatting, Trenton Ross, Barbara Bernardo, Anouk Oldenburger, Sara Toftegaard Hjuler, Iwona Ksiazek, Daniel Lindén, Detlef Schuppan, Sergio Rodriguez-Cuenca, Maria Manuela Tonini, Tamara R. Castañeda, Aimo Kannt, Cecília M. P. Rodrigues, Simon Cockell, Olivier Govaere, Ann K. Daly, Michael Allison, Kristian Honnens de Lichtenberg, Yong Ook Kim, Anna Lindblom, Stephanie Oldham, Anne-Christine Andréasson, Franklin Schlerman, Jonathon Marioneaux, Arun Sanyal, Marta B. Afonso, Ramy Younes, Yuichiro Amano, Scott L. Friedman, Shuang Wang, Dipankar Bhattacharya, Eric Simon, Valérie Paradis, Alastair Burt, Ioanna Maria Grypari, Susan Davies, Ann Driessen, Hiroaki Yashiro, Susanne Pors, Maja Worm Andersen, Michael Feigh, Carla Yunis, Pierre Bedossa, Michelle Stewart, Heather L. Cater, Sara Wells, Jörn M. Schattenberg, Quentin M. Anstee, The LITMUS Investigators, Dina Tiniakos, James W. Perfield, Evangelia Petsalaki, Peter Davidsen, Antonio Vidal-Puig\",\"doi\":\"10.1038/s42255-024-01043-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD ‘human proximity score’ to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research. The LITMUS consortium provides a resource of rodent MASLD models benchmarked against metabolic, histologic and transcriptomic features that are relevant for human MASLD. The work is useful for selecting relevant rodent models for studying this common disease.\",\"PeriodicalId\":19038,\"journal\":{\"name\":\"Nature metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42255-024-01043-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s42255-024-01043-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-024-01043-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD)
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD ‘human proximity score’ to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research. The LITMUS consortium provides a resource of rodent MASLD models benchmarked against metabolic, histologic and transcriptomic features that are relevant for human MASLD. The work is useful for selecting relevant rodent models for studying this common disease.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.