{"title":"用于 20.2% 效率有机太阳能电池的具有不对称结构和苯基取代烷基侧链的非富勒烯受体","authors":"Yuanyuan Jiang, Shaoming Sun, Renjie Xu, Feng Liu, Xiaodan Miao, Guangliu Ran, Kerui Liu, Yuanping Yi, Wenkai Zhang, Xiaozhang Zhu","doi":"10.1038/s41560-024-01557-z","DOIUrl":null,"url":null,"abstract":"For organic solar cells (OSCs), bridging the gap with Shockley–Queisser limit necessitates simultaneously reducing the energy loss for a high open-circuit voltage, improving light utilization for enhanced short-circuit current density and maintaining ideal nanomorphology with a high fill factor through molecular design and device engineering. Here we design and synthesize an asymmetric non-fullerene acceptor (Z8) featuring tethered phenyl groups to establish an alloy acceptor in ternary OSCs. The asymmetric structure minimizes non-radiative energy loss and charge recombination owing to delocalized excitons. The phenyl-substituted alkyl side chain impacts on the intermolecular interactions, improving the film nanomorphology with efficient exciton dissociation and reduced charge recombination. We demonstrate OSCs with an efficiency of 20.2% (certified 19.8%) based on the D18:Z8:L8-BO ternary blend. Through theoretical calculations, we examine the overall distribution of photon and carrier losses and analyse the potential for improvement on open-circuit voltage, short-circuit current density and fill factor, providing rational guidance for further development of the OSC performance. Molecular design is key to the power conversion efficiency in organic photovoltaics. Jiang, Sun, Xu et al. develop a non-fullerene acceptor with asymmetric structure and phenyl-substituted side chains that minimizes photon and carrier losses, enabling 20.2% efficiency.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells\",\"authors\":\"Yuanyuan Jiang, Shaoming Sun, Renjie Xu, Feng Liu, Xiaodan Miao, Guangliu Ran, Kerui Liu, Yuanping Yi, Wenkai Zhang, Xiaozhang Zhu\",\"doi\":\"10.1038/s41560-024-01557-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For organic solar cells (OSCs), bridging the gap with Shockley–Queisser limit necessitates simultaneously reducing the energy loss for a high open-circuit voltage, improving light utilization for enhanced short-circuit current density and maintaining ideal nanomorphology with a high fill factor through molecular design and device engineering. Here we design and synthesize an asymmetric non-fullerene acceptor (Z8) featuring tethered phenyl groups to establish an alloy acceptor in ternary OSCs. The asymmetric structure minimizes non-radiative energy loss and charge recombination owing to delocalized excitons. The phenyl-substituted alkyl side chain impacts on the intermolecular interactions, improving the film nanomorphology with efficient exciton dissociation and reduced charge recombination. We demonstrate OSCs with an efficiency of 20.2% (certified 19.8%) based on the D18:Z8:L8-BO ternary blend. Through theoretical calculations, we examine the overall distribution of photon and carrier losses and analyse the potential for improvement on open-circuit voltage, short-circuit current density and fill factor, providing rational guidance for further development of the OSC performance. Molecular design is key to the power conversion efficiency in organic photovoltaics. Jiang, Sun, Xu et al. develop a non-fullerene acceptor with asymmetric structure and phenyl-substituted side chains that minimizes photon and carrier losses, enabling 20.2% efficiency.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01557-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01557-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells
For organic solar cells (OSCs), bridging the gap with Shockley–Queisser limit necessitates simultaneously reducing the energy loss for a high open-circuit voltage, improving light utilization for enhanced short-circuit current density and maintaining ideal nanomorphology with a high fill factor through molecular design and device engineering. Here we design and synthesize an asymmetric non-fullerene acceptor (Z8) featuring tethered phenyl groups to establish an alloy acceptor in ternary OSCs. The asymmetric structure minimizes non-radiative energy loss and charge recombination owing to delocalized excitons. The phenyl-substituted alkyl side chain impacts on the intermolecular interactions, improving the film nanomorphology with efficient exciton dissociation and reduced charge recombination. We demonstrate OSCs with an efficiency of 20.2% (certified 19.8%) based on the D18:Z8:L8-BO ternary blend. Through theoretical calculations, we examine the overall distribution of photon and carrier losses and analyse the potential for improvement on open-circuit voltage, short-circuit current density and fill factor, providing rational guidance for further development of the OSC performance. Molecular design is key to the power conversion efficiency in organic photovoltaics. Jiang, Sun, Xu et al. develop a non-fullerene acceptor with asymmetric structure and phenyl-substituted side chains that minimizes photon and carrier losses, enabling 20.2% efficiency.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.