Xiaoqian Li, Tao Yu, Xiaolu Li, Xiangqin He, Bei Zhang, Yanyan Yang
{"title":"新型蛋白质酰化修饰在免疫及其相关疾病中的作用。","authors":"Xiaoqian Li, Tao Yu, Xiaolu Li, Xiangqin He, Bei Zhang, Yanyan Yang","doi":"10.1111/imm.13822","DOIUrl":null,"url":null,"abstract":"<p>The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"173 1","pages":"53-75"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13822","citationCount":"0","resultStr":"{\"title\":\"Role of novel protein acylation modifications in immunity and its related diseases\",\"authors\":\"Xiaoqian Li, Tao Yu, Xiaolu Li, Xiangqin He, Bei Zhang, Yanyan Yang\",\"doi\":\"10.1111/imm.13822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\"173 1\",\"pages\":\"53-75\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13822\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imm.13822\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13822","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Role of novel protein acylation modifications in immunity and its related diseases
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.