{"title":"系统分析非小细胞肺癌中的 IGF2BP 家族成员。","authors":"Liping Gong, Qin Liu, Ming Jia, Xifeng Sun","doi":"10.1186/s40246-024-00632-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address.</p><p><strong>Methods: </strong>Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs.</p><p><strong>Results: </strong>IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC.</p><p><strong>Conclusion: </strong>Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"63"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167947/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic analysis of IGF2BP family members in non-small-cell lung cancer.\",\"authors\":\"Liping Gong, Qin Liu, Ming Jia, Xifeng Sun\",\"doi\":\"10.1186/s40246-024-00632-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address.</p><p><strong>Methods: </strong>Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs.</p><p><strong>Results: </strong>IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC.</p><p><strong>Conclusion: </strong>Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.</p>\",\"PeriodicalId\":13183,\"journal\":{\"name\":\"Human Genomics\",\"volume\":\"18 1\",\"pages\":\"63\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40246-024-00632-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00632-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Systematic analysis of IGF2BP family members in non-small-cell lung cancer.
Background: The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address.
Methods: Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs.
Results: IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC.
Conclusion: Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.