[带背景体信号抑制的弥散加权全身成像方向的基础磁共振成像研究]。

Nihon Hoshasen Gijutsu Gakkai zasshi Pub Date : 2024-07-20 Epub Date: 2024-06-12 DOI:10.6009/jjrt.2024-1449
Shota Katsumata, Toshiyuki Takahashi, Shuko Nishimura, Tetsuichi Hondera, Mitsuyoshi Yasuda, Kyoichi Kato
{"title":"[带背景体信号抑制的弥散加权全身成像方向的基础磁共振成像研究]。","authors":"Shota Katsumata, Toshiyuki Takahashi, Shuko Nishimura, Tetsuichi Hondera, Mitsuyoshi Yasuda, Kyoichi Kato","doi":"10.6009/jjrt.2024-1449","DOIUrl":null,"url":null,"abstract":"<p><p>A diffusion-weighted whole body imaging with background body signal suppression (DWIBS) is usually imaged as a whole body with Transverse (Tra). However, Tra has a large number of stations and a larger number than Coronal (Cor), so the scan time is longer. There are also drawbacks, such as signal unevenness between series. It is known that the effect of distortion is large in Cor. There is no report on it in Sagittal (Sag). Therefore, in this study, we focused on Sag and examined the imaging time, image distortion, fat suppression effect, and continuity between stations. In the examination by the phantom, the scan time was the shortest for Cor and the longest for Sag. In the strain evaluation, the effect of strain could be suppressed compared to Cor by using a rectangle field of view (FOV) in the anterior to posterior (AP) direction in Tra and Sag. There was no difference in the fat suppression effect depending on the imaging direction. Similar results were obtained in a study of 10 healthy volunteers, with Sag having the best continuity between stations.</p>","PeriodicalId":74309,"journal":{"name":"Nihon Hoshasen Gijutsu Gakkai zasshi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Basic MRI Study in the Imaging Direction of a Diffusion-weighted Whole Body Imaging with Background Body Signal Suppression].\",\"authors\":\"Shota Katsumata, Toshiyuki Takahashi, Shuko Nishimura, Tetsuichi Hondera, Mitsuyoshi Yasuda, Kyoichi Kato\",\"doi\":\"10.6009/jjrt.2024-1449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A diffusion-weighted whole body imaging with background body signal suppression (DWIBS) is usually imaged as a whole body with Transverse (Tra). However, Tra has a large number of stations and a larger number than Coronal (Cor), so the scan time is longer. There are also drawbacks, such as signal unevenness between series. It is known that the effect of distortion is large in Cor. There is no report on it in Sagittal (Sag). Therefore, in this study, we focused on Sag and examined the imaging time, image distortion, fat suppression effect, and continuity between stations. In the examination by the phantom, the scan time was the shortest for Cor and the longest for Sag. In the strain evaluation, the effect of strain could be suppressed compared to Cor by using a rectangle field of view (FOV) in the anterior to posterior (AP) direction in Tra and Sag. There was no difference in the fat suppression effect depending on the imaging direction. Similar results were obtained in a study of 10 healthy volunteers, with Sag having the best continuity between stations.</p>\",\"PeriodicalId\":74309,\"journal\":{\"name\":\"Nihon Hoshasen Gijutsu Gakkai zasshi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nihon Hoshasen Gijutsu Gakkai zasshi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6009/jjrt.2024-1449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Hoshasen Gijutsu Gakkai zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6009/jjrt.2024-1449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带背景体信号抑制的全身弥散加权成像(DWIBS)通常采用横向(Tra)全身成像。不过,Tra 的站数较多,比 Coronal(Cor)的站数多,因此扫描时间较长。同时也存在一些缺点,如序列间信号不均匀。众所周知,矢状位(Sagittal)的失真影响较大,但目前尚无相关报道。因此,在本研究中,我们重点研究了矢状位,并检查了成像时间、图像失真、脂肪抑制效应和站间连续性。在使用模型进行检查时,Cor 扫描时间最短,Sag 扫描时间最长。在应变评估中,与 Cor 相比,Tra 和 Sag 在前后(AP)方向使用矩形视场(FOV)可抑制应变的影响。不同成像方向的脂肪抑制效果没有差异。在对 10 名健康志愿者进行的研究中也获得了类似的结果,其中 Sag 站之间的连续性最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Basic MRI Study in the Imaging Direction of a Diffusion-weighted Whole Body Imaging with Background Body Signal Suppression].

A diffusion-weighted whole body imaging with background body signal suppression (DWIBS) is usually imaged as a whole body with Transverse (Tra). However, Tra has a large number of stations and a larger number than Coronal (Cor), so the scan time is longer. There are also drawbacks, such as signal unevenness between series. It is known that the effect of distortion is large in Cor. There is no report on it in Sagittal (Sag). Therefore, in this study, we focused on Sag and examined the imaging time, image distortion, fat suppression effect, and continuity between stations. In the examination by the phantom, the scan time was the shortest for Cor and the longest for Sag. In the strain evaluation, the effect of strain could be suppressed compared to Cor by using a rectangle field of view (FOV) in the anterior to posterior (AP) direction in Tra and Sag. There was no difference in the fat suppression effect depending on the imaging direction. Similar results were obtained in a study of 10 healthy volunteers, with Sag having the best continuity between stations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Long-term Reproducibility Evaluation of Fluoroscopy Dose Rate in Angiography Equipment]. [Root Cause Analysis for Incident Reporting Cases of Radiological Technologists Based on Years of Experience]. [Effect of Training Data Differences on Accuracy in MR Image Generation Using Pix2pix]. [Noise Characteristics of Summary Maps for Brain CT Perfusion: A Simulation Study Using a Digital Phantom and Clinical Images]. [Effect of Pulse Wave Synchronization on T1 Value in Cardiac T1 Mapping: Is Pulse Wave Synchronization a Substitute for Electrocardiogram Gating?]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1