用于快速成型制造的高硅电工钢粉

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-06-08 DOI:10.1016/j.powtec.2024.119986
Vitor E. Pinotti , Angelo F. Andreoli , Mayumi A. Nakahashi , Mário Boccalini Jr. , Fernando J.G. Landgraf , Piter Gargarella
{"title":"用于快速成型制造的高硅电工钢粉","authors":"Vitor E. Pinotti ,&nbsp;Angelo F. Andreoli ,&nbsp;Mayumi A. Nakahashi ,&nbsp;Mário Boccalini Jr. ,&nbsp;Fernando J.G. Landgraf ,&nbsp;Piter Gargarella","doi":"10.1016/j.powtec.2024.119986","DOIUrl":null,"url":null,"abstract":"<div><p>The Fe6.5Si soft magnetic alloy exhibits promising magnetic properties for energy applications, including near-zero magnetostriction, low magnetocrystalline anisotropy, and higher electrical resistivity than conventional electrical steels. However, its brittleness impedes industrial use. Recent advances in powder-based additive manufacturing show potential for processing high‑silicon electrical steels. This study focuses on the production cycle and properties of feedstock powder, which are crucial for such applications. Fe6.5Si alloy powders were produced via closed-coupled gas atomization. Comprehensive analysis covered mass balance, particle size distribution, powder flow, morphology, density, rheological properties, and thermal and magnetic behavior. Results suggest the feasibility of producing suitable Fe6.5Si alloy powder via gas atomization, enabling additive manufacturing of the next generation of medium/high-frequency electrical motors. The powder exhibited desirable characteristics within the size ranges applicable to laser powder bed fusion (20–75 μm) and direct energy deposition (75–106 μm), showing excellent flow behavior and morphological suitability for additive manufacturing.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‑silicon electrical steel powders aimed for additive manufacturing\",\"authors\":\"Vitor E. Pinotti ,&nbsp;Angelo F. Andreoli ,&nbsp;Mayumi A. Nakahashi ,&nbsp;Mário Boccalini Jr. ,&nbsp;Fernando J.G. Landgraf ,&nbsp;Piter Gargarella\",\"doi\":\"10.1016/j.powtec.2024.119986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Fe6.5Si soft magnetic alloy exhibits promising magnetic properties for energy applications, including near-zero magnetostriction, low magnetocrystalline anisotropy, and higher electrical resistivity than conventional electrical steels. However, its brittleness impedes industrial use. Recent advances in powder-based additive manufacturing show potential for processing high‑silicon electrical steels. This study focuses on the production cycle and properties of feedstock powder, which are crucial for such applications. Fe6.5Si alloy powders were produced via closed-coupled gas atomization. Comprehensive analysis covered mass balance, particle size distribution, powder flow, morphology, density, rheological properties, and thermal and magnetic behavior. Results suggest the feasibility of producing suitable Fe6.5Si alloy powder via gas atomization, enabling additive manufacturing of the next generation of medium/high-frequency electrical motors. The powder exhibited desirable characteristics within the size ranges applicable to laser powder bed fusion (20–75 μm) and direct energy deposition (75–106 μm), showing excellent flow behavior and morphological suitability for additive manufacturing.</p></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024006296\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024006296","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统电工钢相比,Fe6.5Si 软磁合金在能源应用方面具有良好的磁性能,包括近乎零的磁致伸缩性、低磁晶各向异性和更高的电阻率。然而,它的脆性阻碍了其工业应用。粉末增材制造技术的最新进展显示了加工高硅电工钢的潜力。本研究侧重于原料粉末的生产周期和特性,这对此类应用至关重要。Fe6.5Si 合金粉末是通过闭合耦合气体雾化技术生产的。综合分析包括质量平衡、粒度分布、粉末流动、形态、密度、流变特性以及热和磁性行为。结果表明,通过气体雾化法生产合适的 Fe6.5Si 合金粉末是可行的,可实现下一代中/高频电机的增材制造。该粉末在适用于激光粉末床熔融(20-75 μm)和直接能量沉积(75-106 μm)的尺寸范围内表现出理想的特性,显示出卓越的流动性和形态适合于增材制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High‑silicon electrical steel powders aimed for additive manufacturing

The Fe6.5Si soft magnetic alloy exhibits promising magnetic properties for energy applications, including near-zero magnetostriction, low magnetocrystalline anisotropy, and higher electrical resistivity than conventional electrical steels. However, its brittleness impedes industrial use. Recent advances in powder-based additive manufacturing show potential for processing high‑silicon electrical steels. This study focuses on the production cycle and properties of feedstock powder, which are crucial for such applications. Fe6.5Si alloy powders were produced via closed-coupled gas atomization. Comprehensive analysis covered mass balance, particle size distribution, powder flow, morphology, density, rheological properties, and thermal and magnetic behavior. Results suggest the feasibility of producing suitable Fe6.5Si alloy powder via gas atomization, enabling additive manufacturing of the next generation of medium/high-frequency electrical motors. The powder exhibited desirable characteristics within the size ranges applicable to laser powder bed fusion (20–75 μm) and direct energy deposition (75–106 μm), showing excellent flow behavior and morphological suitability for additive manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Editorial Board Graphical abstract TOC Graphical abstract TOC Contents continued Development of a versatile method for predicting the density of monocomponent dry fine materials compacts based on comparative study of compression factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1