{"title":"通过原位光电子能谱研究铋作为金属与碳化硅接触的缓冲层","authors":"Xiangrui Geng , Yishui Ding , Sisheng Duan , Wei Chen","doi":"10.1016/j.susc.2024.122530","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using <em>in situ</em> X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 1.6×10<sup>9</sup> Langmuir of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth as a buffer layer for metal contact with silicon carbide studied by In situ photoelectron spectroscopy\",\"authors\":\"Xiangrui Geng , Yishui Ding , Sisheng Duan , Wei Chen\",\"doi\":\"10.1016/j.susc.2024.122530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using <em>in situ</em> X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 1.6×10<sup>9</sup> Langmuir of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824000815\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000815","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bismuth as a buffer layer for metal contact with silicon carbide studied by In situ photoelectron spectroscopy
Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 1.6×109 Langmuir of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.