预制水平排水沟在真空预加载条件下处理分阶段填充泥浆的设计参数研究

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-06-12 DOI:10.1016/j.geotexmem.2024.05.011
Ding-Bao Song , Yu Pan , Wen-Bo Chen , Pei-Chen Wu , Jian-Hua Yin
{"title":"预制水平排水沟在真空预加载条件下处理分阶段填充泥浆的设计参数研究","authors":"Ding-Bao Song ,&nbsp;Yu Pan ,&nbsp;Wen-Bo Chen ,&nbsp;Pei-Chen Wu ,&nbsp;Jian-Hua Yin","doi":"10.1016/j.geotexmem.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>The method of using Prefabricated Horizontal Drains (PHDs) placed in layers under vacuum preloading can significantly speed up consolidation of staged-filled soil slurry. The PHDs can settle with the soil slurry and maintain their shape/pattern and dewatering capacity largely in comparison with Prefabricated Vertical Drains (PVDs). This study presents a field trial focused on treating dredged sediments using PHDs under vacuum preloading for land reclamation purposes. The staged filling involved in the field trial is analyzed using a finite strain consolidation model based on the piecewise-linear finite-difference method. Then, the effects of horizontal and vertical spacings of PHDs on settlement and vacuum consolidation rate are evaluated, considering various combinations of variables for staged-filled soil. It is found that for soils with low compressibility, the consolidation rate is primarily affected by the vertical spacing of PHD layers. For soils with higher compressibility, the consolidation rate is more significantly affected by the horizontal spacing of PHDs, and the final settlement after vacuum preloading is mainly influenced by the vertical spacing of PHD layers. This study provides practical recommendations for cost-effective design of horizontal and vertical spacings of PHDs in efficiently treating soil slurry with different compressibility and initial conditions.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 985-998"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of design parameters for staged-filled slurry treated by prefabricated horizontal drains under vacuum preloading\",\"authors\":\"Ding-Bao Song ,&nbsp;Yu Pan ,&nbsp;Wen-Bo Chen ,&nbsp;Pei-Chen Wu ,&nbsp;Jian-Hua Yin\",\"doi\":\"10.1016/j.geotexmem.2024.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The method of using Prefabricated Horizontal Drains (PHDs) placed in layers under vacuum preloading can significantly speed up consolidation of staged-filled soil slurry. The PHDs can settle with the soil slurry and maintain their shape/pattern and dewatering capacity largely in comparison with Prefabricated Vertical Drains (PVDs). This study presents a field trial focused on treating dredged sediments using PHDs under vacuum preloading for land reclamation purposes. The staged filling involved in the field trial is analyzed using a finite strain consolidation model based on the piecewise-linear finite-difference method. Then, the effects of horizontal and vertical spacings of PHDs on settlement and vacuum consolidation rate are evaluated, considering various combinations of variables for staged-filled soil. It is found that for soils with low compressibility, the consolidation rate is primarily affected by the vertical spacing of PHD layers. For soils with higher compressibility, the consolidation rate is more significantly affected by the horizontal spacing of PHDs, and the final settlement after vacuum preloading is mainly influenced by the vertical spacing of PHD layers. This study provides practical recommendations for cost-effective design of horizontal and vertical spacings of PHDs in efficiently treating soil slurry with different compressibility and initial conditions.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 5\",\"pages\":\"Pages 985-998\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000591\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000591","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在真空预压下分层放置预制水平排水沟(PHD)的方法可大大加快分阶段填土泥浆的固结速度。与预制垂直排水沟(PVDs)相比,PHDs 可以与土壤泥浆一起沉降,并在很大程度上保持其形状/形态和脱水能力。本研究介绍了一项实地试验,重点是在真空预载条件下使用 PHD 处理疏浚沉积物,以达到填海造地的目的。采用基于片断线性有限差分法的有限应变固结模型,对现场试验中涉及的分阶段填土进行了分析。然后,考虑到分阶段填土的各种变量组合,评估了 PHD 的水平和垂直间距对沉降和真空固结速率的影响。结果发现,对于压缩性较低的土壤,固结速率主要受 PHD 层垂直间距的影响。对于压缩性较高的土壤,固结速率受 PHD 水平间距的影响更大,而真空预加载后的最终沉降主要受 PHD 层垂直间距的影响。这项研究为高效处理不同压缩性和初始条件下的土壤泥浆提供了具有成本效益的 PHD 水平和垂直间距设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of design parameters for staged-filled slurry treated by prefabricated horizontal drains under vacuum preloading

The method of using Prefabricated Horizontal Drains (PHDs) placed in layers under vacuum preloading can significantly speed up consolidation of staged-filled soil slurry. The PHDs can settle with the soil slurry and maintain their shape/pattern and dewatering capacity largely in comparison with Prefabricated Vertical Drains (PVDs). This study presents a field trial focused on treating dredged sediments using PHDs under vacuum preloading for land reclamation purposes. The staged filling involved in the field trial is analyzed using a finite strain consolidation model based on the piecewise-linear finite-difference method. Then, the effects of horizontal and vertical spacings of PHDs on settlement and vacuum consolidation rate are evaluated, considering various combinations of variables for staged-filled soil. It is found that for soils with low compressibility, the consolidation rate is primarily affected by the vertical spacing of PHD layers. For soils with higher compressibility, the consolidation rate is more significantly affected by the horizontal spacing of PHDs, and the final settlement after vacuum preloading is mainly influenced by the vertical spacing of PHD layers. This study provides practical recommendations for cost-effective design of horizontal and vertical spacings of PHDs in efficiently treating soil slurry with different compressibility and initial conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Experimental study on vacuum preloading combined with intermittent airbag pressurization for treating dredged sludge Corrigendum to “Seismic response and mitigation measures for T shape retaining wall in liquefiable site” [Geotext. Geomembranes. 53(1), (2025) 331–349] Seismic response and mitigation measures for T shape retaining wall in liquefiable site Stress-strain responses of EPS geofoam upon cyclic simple shearing: Experimental investigations and constitutive modeling A large-size model test study on the consolidation effect of construction waste slurry under self-weight and bottom vacuum preloading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1