Devina Syifa Nabila , Rosamond Chan , Rizky Riscahya Pratama Syamsuri , Puspita Nurlilasari , Wan Abd Al Qadr Imad Wan-Mohtar , Abdullah Bilal Ozturk , Nia Rossiana , Febri Doni
{"title":"利用梭状芽孢杆菌从未获充分利用的基质中生产生物丁醇:为可持续能源开发挖掘尚未开发的潜力","authors":"Devina Syifa Nabila , Rosamond Chan , Rizky Riscahya Pratama Syamsuri , Puspita Nurlilasari , Wan Abd Al Qadr Imad Wan-Mohtar , Abdullah Bilal Ozturk , Nia Rossiana , Febri Doni","doi":"10.1016/j.crmicr.2024.100250","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The <em>Clostridium</em> genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to <em>Clostridium</em>, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in <em>Clostridium</em> biobutanol production. This review examines underutilized substrates for biobutanol production by <em>Clostridium,</em> which offer opportunities for environmental sustainability and a green economy. Extensive research on <em>Clostridium</em>, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance <em>Clostridium</em> biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"7 ","pages":"Article 100250"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000324/pdfft?md5=eaa63b3078a01f1d69255c34774c4e0c&pid=1-s2.0-S2666517424000324-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development\",\"authors\":\"Devina Syifa Nabila , Rosamond Chan , Rizky Riscahya Pratama Syamsuri , Puspita Nurlilasari , Wan Abd Al Qadr Imad Wan-Mohtar , Abdullah Bilal Ozturk , Nia Rossiana , Febri Doni\",\"doi\":\"10.1016/j.crmicr.2024.100250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The <em>Clostridium</em> genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to <em>Clostridium</em>, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in <em>Clostridium</em> biobutanol production. This review examines underutilized substrates for biobutanol production by <em>Clostridium,</em> which offer opportunities for environmental sustainability and a green economy. Extensive research on <em>Clostridium</em>, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance <em>Clostridium</em> biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.</p></div>\",\"PeriodicalId\":34305,\"journal\":{\"name\":\"Current Research in Microbial Sciences\",\"volume\":\"7 \",\"pages\":\"Article 100250\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666517424000324/pdfft?md5=eaa63b3078a01f1d69255c34774c4e0c&pid=1-s2.0-S2666517424000324-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Microbial Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666517424000324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development
The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.