地震转换器:基于注意力的地震波场模拟深度学习方法

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-06-06 DOI:10.1016/j.cageo.2024.105629
Yanjin Xiang , Zhiliang Wang , Ziang Song , Rong Huang , Guojie Song , Fan Min
{"title":"地震转换器:基于注意力的地震波场模拟深度学习方法","authors":"Yanjin Xiang ,&nbsp;Zhiliang Wang ,&nbsp;Ziang Song ,&nbsp;Rong Huang ,&nbsp;Guojie Song ,&nbsp;Fan Min","doi":"10.1016/j.cageo.2024.105629","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the accuracy and efficiency of seismic wavefield simulation aids geophysical problem-solving. The finite difference (FD) is widely used, but efficiency drops with increasing grids and higher order of difference formats. We propose an attention mechanism-based deep learning method called SeismicTransformer. Compared with theory-driven methods, such as the second-order central difference method, SeismicTransformer offers at least a tenfold improvement in speed. Compared with the networks without the attention mechanism, the SeismicTransformer achieves better results by utilizing global information. The proposed SeismicTransformer offers a promising solution for seismic wavefield simulation.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"190 ","pages":"Article 105629"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SeismicTransformer: An attention-based deep learning method for the simulation of seismic wavefields\",\"authors\":\"Yanjin Xiang ,&nbsp;Zhiliang Wang ,&nbsp;Ziang Song ,&nbsp;Rong Huang ,&nbsp;Guojie Song ,&nbsp;Fan Min\",\"doi\":\"10.1016/j.cageo.2024.105629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving the accuracy and efficiency of seismic wavefield simulation aids geophysical problem-solving. The finite difference (FD) is widely used, but efficiency drops with increasing grids and higher order of difference formats. We propose an attention mechanism-based deep learning method called SeismicTransformer. Compared with theory-driven methods, such as the second-order central difference method, SeismicTransformer offers at least a tenfold improvement in speed. Compared with the networks without the attention mechanism, the SeismicTransformer achieves better results by utilizing global information. The proposed SeismicTransformer offers a promising solution for seismic wavefield simulation.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"190 \",\"pages\":\"Article 105629\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001122\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001122","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提高地震波场模拟的精度和效率有助于地球物理问题的解决。有限差分(FD)被广泛使用,但随着网格的增加和差分格式阶数的提高,效率也在下降。我们提出了一种基于注意力机制的深度学习方法,名为 SeismicTransformer。与理论驱动的方法(如二阶中心差分法)相比,SeismicTransformer 的速度至少提高了十倍。与没有注意力机制的网络相比,SeismicTransformer 利用全局信息取得了更好的结果。所提出的 SeismicTransformer 为地震波场模拟提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SeismicTransformer: An attention-based deep learning method for the simulation of seismic wavefields

Improving the accuracy and efficiency of seismic wavefield simulation aids geophysical problem-solving. The finite difference (FD) is widely used, but efficiency drops with increasing grids and higher order of difference formats. We propose an attention mechanism-based deep learning method called SeismicTransformer. Compared with theory-driven methods, such as the second-order central difference method, SeismicTransformer offers at least a tenfold improvement in speed. Compared with the networks without the attention mechanism, the SeismicTransformer achieves better results by utilizing global information. The proposed SeismicTransformer offers a promising solution for seismic wavefield simulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1