{"title":"基于双语义特征互补融合的自动驾驶道路负面障碍物分割","authors":"Zhen Feng;Yanning Guo;Yuxiang Sun","doi":"10.1109/TIV.2024.3376534","DOIUrl":null,"url":null,"abstract":"Segmentation of road negative obstacles (i.e., potholes and cracks) is important to the safety of autonomous driving. Although existing RGB-D fusion networks could achieve acceptable performance, most of them only conduct binary segmentation for negative obstacles, which does not distinguish potholes and cracks. Moreover, their performance is susceptible to depth noises, in which case the fluctuations of depth data caused by the noises may make the networks mistakenly treat the area as a negative obstacle. To provide a solution to the above issues, we design a novel RGB-D semantic segmentation network with dual semantic-feature complementary fusion for road negative obstacle segmentation. We also re-label an RGB-D dataset for this task, which distinguishes road potholes and cracks as two different classes. Experimental results show that our network achieves state-of-the-art performance compared to existing well-known networks.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 4","pages":"4687-4697"},"PeriodicalIF":14.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Road Negative Obstacles Based on Dual Semantic-Feature Complementary Fusion for Autonomous Driving\",\"authors\":\"Zhen Feng;Yanning Guo;Yuxiang Sun\",\"doi\":\"10.1109/TIV.2024.3376534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of road negative obstacles (i.e., potholes and cracks) is important to the safety of autonomous driving. Although existing RGB-D fusion networks could achieve acceptable performance, most of them only conduct binary segmentation for negative obstacles, which does not distinguish potholes and cracks. Moreover, their performance is susceptible to depth noises, in which case the fluctuations of depth data caused by the noises may make the networks mistakenly treat the area as a negative obstacle. To provide a solution to the above issues, we design a novel RGB-D semantic segmentation network with dual semantic-feature complementary fusion for road negative obstacle segmentation. We also re-label an RGB-D dataset for this task, which distinguishes road potholes and cracks as two different classes. Experimental results show that our network achieves state-of-the-art performance compared to existing well-known networks.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 4\",\"pages\":\"4687-4697\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10468640/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10468640/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Segmentation of Road Negative Obstacles Based on Dual Semantic-Feature Complementary Fusion for Autonomous Driving
Segmentation of road negative obstacles (i.e., potholes and cracks) is important to the safety of autonomous driving. Although existing RGB-D fusion networks could achieve acceptable performance, most of them only conduct binary segmentation for negative obstacles, which does not distinguish potholes and cracks. Moreover, their performance is susceptible to depth noises, in which case the fluctuations of depth data caused by the noises may make the networks mistakenly treat the area as a negative obstacle. To provide a solution to the above issues, we design a novel RGB-D semantic segmentation network with dual semantic-feature complementary fusion for road negative obstacle segmentation. We also re-label an RGB-D dataset for this task, which distinguishes road potholes and cracks as two different classes. Experimental results show that our network achieves state-of-the-art performance compared to existing well-known networks.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.