Olivier Brown, Zhuo Fang, Andra Smith, Katherine Healey, Roger Zemek, Andrée-Anne Ledoux
{"title":"小儿脑震荡康复过程中心理复原力变化与静息状态功能连接性之间的关系","authors":"Olivier Brown, Zhuo Fang, Andra Smith, Katherine Healey, Roger Zemek, Andrée-Anne Ledoux","doi":"10.1089/brain.2023.0096","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> This study investigated the association between psychological resilience and resting-state network functional connectivity of three major brain networks in pediatric concussion. <b><i>Methods:</i></b> This was a substudy of a randomized controlled trial, recruiting children with concussion and orthopedic injury. Participants completed the Connor-Davidson Resilience 10 Scale and underwent magnetic resonance imaging at 72 h and 4-weeks postinjury. We explored associations between resilience and connectivity with the default mode network (DMN), central executive network (CEN), and salience network (SN) at both timepoints and also any change that occurred over time. We also explored associations between resilience and connectivity within each network. <b><i>Results:</i></b> A total of 67 children with a concussion (median age = 12.87 [IQR: 11.79-14.36]; 46% female) and 30 with orthopedic injury (median age = 12.27 [IQR: 11.19-13.94]; 40% female) were included. Seed-to-voxel analyses detected a positive correlation between 72-h resilience and CEN connectivity in the concussion group. Group moderated associations between resilience and SN connectivity at 72 h, as well as resilience and DMN connectivity over time. Regions-of-interest analyses identified group as a moderator of longitudinal resilience and within-DMN connectivity. <b><i>Conclusions:</i></b> These results suggest that neural recovery from concussion could be reliant on resilience. Resilience was related to functional connectivity with three of the main networks in the brain that are often impacted by concussion. Improving resilience might be investigated as a modifiable variable in children as both a protective and restorative in the context of concussion. Clinical Trial Registration Identifier: NCT05105802. PedCARE<sup>+MRI</sup> team (see Supplementary Appendix S1).</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"357-368"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations Between Changes in Psychological Resilience and Resting-State Functional Connectivity Throughout Pediatric Concussion Recovery.\",\"authors\":\"Olivier Brown, Zhuo Fang, Andra Smith, Katherine Healey, Roger Zemek, Andrée-Anne Ledoux\",\"doi\":\"10.1089/brain.2023.0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Purpose:</i></b> This study investigated the association between psychological resilience and resting-state network functional connectivity of three major brain networks in pediatric concussion. <b><i>Methods:</i></b> This was a substudy of a randomized controlled trial, recruiting children with concussion and orthopedic injury. Participants completed the Connor-Davidson Resilience 10 Scale and underwent magnetic resonance imaging at 72 h and 4-weeks postinjury. We explored associations between resilience and connectivity with the default mode network (DMN), central executive network (CEN), and salience network (SN) at both timepoints and also any change that occurred over time. We also explored associations between resilience and connectivity within each network. <b><i>Results:</i></b> A total of 67 children with a concussion (median age = 12.87 [IQR: 11.79-14.36]; 46% female) and 30 with orthopedic injury (median age = 12.27 [IQR: 11.19-13.94]; 40% female) were included. Seed-to-voxel analyses detected a positive correlation between 72-h resilience and CEN connectivity in the concussion group. Group moderated associations between resilience and SN connectivity at 72 h, as well as resilience and DMN connectivity over time. Regions-of-interest analyses identified group as a moderator of longitudinal resilience and within-DMN connectivity. <b><i>Conclusions:</i></b> These results suggest that neural recovery from concussion could be reliant on resilience. Resilience was related to functional connectivity with three of the main networks in the brain that are often impacted by concussion. Improving resilience might be investigated as a modifiable variable in children as both a protective and restorative in the context of concussion. Clinical Trial Registration Identifier: NCT05105802. PedCARE<sup>+MRI</sup> team (see Supplementary Appendix S1).</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"357-368\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0096\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0096","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Associations Between Changes in Psychological Resilience and Resting-State Functional Connectivity Throughout Pediatric Concussion Recovery.
Purpose: This study investigated the association between psychological resilience and resting-state network functional connectivity of three major brain networks in pediatric concussion. Methods: This was a substudy of a randomized controlled trial, recruiting children with concussion and orthopedic injury. Participants completed the Connor-Davidson Resilience 10 Scale and underwent magnetic resonance imaging at 72 h and 4-weeks postinjury. We explored associations between resilience and connectivity with the default mode network (DMN), central executive network (CEN), and salience network (SN) at both timepoints and also any change that occurred over time. We also explored associations between resilience and connectivity within each network. Results: A total of 67 children with a concussion (median age = 12.87 [IQR: 11.79-14.36]; 46% female) and 30 with orthopedic injury (median age = 12.27 [IQR: 11.19-13.94]; 40% female) were included. Seed-to-voxel analyses detected a positive correlation between 72-h resilience and CEN connectivity in the concussion group. Group moderated associations between resilience and SN connectivity at 72 h, as well as resilience and DMN connectivity over time. Regions-of-interest analyses identified group as a moderator of longitudinal resilience and within-DMN connectivity. Conclusions: These results suggest that neural recovery from concussion could be reliant on resilience. Resilience was related to functional connectivity with three of the main networks in the brain that are often impacted by concussion. Improving resilience might be investigated as a modifiable variable in children as both a protective and restorative in the context of concussion. Clinical Trial Registration Identifier: NCT05105802. PedCARE+MRI team (see Supplementary Appendix S1).
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.