静息态网络分析揭示本质性震颤的大脑功能连接性改变

IF 2.4 3区 医学 Q3 NEUROSCIENCES Brain connectivity Pub Date : 2024-09-01 Epub Date: 2024-07-25 DOI:10.1089/brain.2024.0004
Sheng-Min Huang, Cheung-Ter Ong, Yu-Ching Huang, Nan-Hao Chen, Ting-Kai Leung, Chun-Ying Shen, Li-Wei Kuo
{"title":"静息态网络分析揭示本质性震颤的大脑功能连接性改变","authors":"Sheng-Min Huang, Cheung-Ter Ong, Yu-Ching Huang, Nan-Hao Chen, Ting-Kai Leung, Chun-Ying Shen, Li-Wei Kuo","doi":"10.1089/brain.2024.0004","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Essential tremor (ET) comprises motor and non-motor-related features, whereas the current neuro-pathogenetic basis is still insufficient to explain the etiologies of ET. Although cerebellum-associated circuits have been discovered, the large-scale cerebral network connectivity in ET remains unclear. This study aimed to characterize the ET in terms of functional connectivity as well as network. We hypothesized that the resting-state network (RSN) within cerebrum could be altered in patients with ET. <b><i>Methods:</i></b> Resting-state functional magnetic resonance imaging (fMRI) was used to evaluate the inter- and intra-network connectivity as well as the functional activity in ET and normal control. Correlation analysis was performed to explore the relationship between RSN metrics and tremor features. <b><i>Results:</i></b> Comparison of inter-network connectivity indicated a decreased connectivity between default mode network and ventral attention network in the ET group (<i>p</i> < 0.05). Differences in functional activity (assessed by amplitude of low-frequency fluctuation, ALFF) were found in several brain regions participating in various RSNs (<i>p</i> < 0.05). The ET group generally has higher degree centrality over normal control. Correlation analysis has revealed that tremor features are associated with inter-network connectivity (|r| = 0.135-0.506), ALFF (|r| = 0.313-0.766), and degree centrality (|r| = 0.523-0.710). <b><i>Conclusion:</i></b> Alterations in the cerebral network of ET were detected by using resting-state fMRI, demonstrating a potentially useful approach to explore the cerebral alterations in ET.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resting-State Network Analysis Reveals Altered Functional Brain Connectivity in Essential Tremor.\",\"authors\":\"Sheng-Min Huang, Cheung-Ter Ong, Yu-Ching Huang, Nan-Hao Chen, Ting-Kai Leung, Chun-Ying Shen, Li-Wei Kuo\",\"doi\":\"10.1089/brain.2024.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Essential tremor (ET) comprises motor and non-motor-related features, whereas the current neuro-pathogenetic basis is still insufficient to explain the etiologies of ET. Although cerebellum-associated circuits have been discovered, the large-scale cerebral network connectivity in ET remains unclear. This study aimed to characterize the ET in terms of functional connectivity as well as network. We hypothesized that the resting-state network (RSN) within cerebrum could be altered in patients with ET. <b><i>Methods:</i></b> Resting-state functional magnetic resonance imaging (fMRI) was used to evaluate the inter- and intra-network connectivity as well as the functional activity in ET and normal control. Correlation analysis was performed to explore the relationship between RSN metrics and tremor features. <b><i>Results:</i></b> Comparison of inter-network connectivity indicated a decreased connectivity between default mode network and ventral attention network in the ET group (<i>p</i> < 0.05). Differences in functional activity (assessed by amplitude of low-frequency fluctuation, ALFF) were found in several brain regions participating in various RSNs (<i>p</i> < 0.05). The ET group generally has higher degree centrality over normal control. Correlation analysis has revealed that tremor features are associated with inter-network connectivity (|r| = 0.135-0.506), ALFF (|r| = 0.313-0.766), and degree centrality (|r| = 0.523-0.710). <b><i>Conclusion:</i></b> Alterations in the cerebral network of ET were detected by using resting-state fMRI, demonstrating a potentially useful approach to explore the cerebral alterations in ET.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2024.0004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

导言:本质性震颤(ET)包括运动和非运动相关特征,而目前的神经致病基础仍不足以解释ET的病因。虽然小脑相关回路已被发现,但 ET 的大规模大脑网络连接仍不清楚。本研究旨在从功能连接和网络方面描述 ET 的特征。我们假设 ET 患者大脑内的静息态网络可能会发生改变:方法:采用静息状态功能磁共振成像(fMRI)评估 ET 和正常对照组的网络间和网络内连接以及功能活动。进行相关分析以探讨静息态网络指标与震颤特征之间的关系:结果:网络间连接的比较表明,ET 组默认模式网络和腹侧注意网络之间的连接性降低(PC结论:ET 组的大脑网络结构发生了改变:利用静息态 fMRI 检测出 ET 大脑网络的改变,证明这是一种探索 ET 大脑改变的潜在有用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resting-State Network Analysis Reveals Altered Functional Brain Connectivity in Essential Tremor.

Introduction: Essential tremor (ET) comprises motor and non-motor-related features, whereas the current neuro-pathogenetic basis is still insufficient to explain the etiologies of ET. Although cerebellum-associated circuits have been discovered, the large-scale cerebral network connectivity in ET remains unclear. This study aimed to characterize the ET in terms of functional connectivity as well as network. We hypothesized that the resting-state network (RSN) within cerebrum could be altered in patients with ET. Methods: Resting-state functional magnetic resonance imaging (fMRI) was used to evaluate the inter- and intra-network connectivity as well as the functional activity in ET and normal control. Correlation analysis was performed to explore the relationship between RSN metrics and tremor features. Results: Comparison of inter-network connectivity indicated a decreased connectivity between default mode network and ventral attention network in the ET group (p < 0.05). Differences in functional activity (assessed by amplitude of low-frequency fluctuation, ALFF) were found in several brain regions participating in various RSNs (p < 0.05). The ET group generally has higher degree centrality over normal control. Correlation analysis has revealed that tremor features are associated with inter-network connectivity (|r| = 0.135-0.506), ALFF (|r| = 0.313-0.766), and degree centrality (|r| = 0.523-0.710). Conclusion: Alterations in the cerebral network of ET were detected by using resting-state fMRI, demonstrating a potentially useful approach to explore the cerebral alterations in ET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
期刊最新文献
Editorial: Advancing Neuroscience Through Innovative Methods and Clinical Applications. Altered functional coupling of the bed nucleus of the stria terminalis and amygdala in spider phobic fear. Association of exercise with better olfactory performance and higher functional connectivity between the olfactory cortex and the prefrontal cortex: a resting-state fNIRS study. Atlas-based structural disconnectomes are associated to cognitive performance in brain tumors. Connectivity Changes Following Episodic Future Thinking in Alcohol Use Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1