隐含化学空间中的进化多目标分子优化。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-06-13 DOI:10.1021/acs.jcim.4c00031
Xin Xia, Yiping Liu, Chunhou Zheng, Xingyi Zhang, Qingwen Wu, Xin Gao, Xiangxiang Zeng* and Yansen Su*, 
{"title":"隐含化学空间中的进化多目标分子优化。","authors":"Xin Xia,&nbsp;Yiping Liu,&nbsp;Chunhou Zheng,&nbsp;Xingyi Zhang,&nbsp;Qingwen Wu,&nbsp;Xin Gao,&nbsp;Xiangxiang Zeng* and Yansen Su*,&nbsp;","doi":"10.1021/acs.jcim.4c00031","DOIUrl":null,"url":null,"abstract":"<p >Optimization techniques play a pivotal role in advancing drug development, serving as the foundation of numerous generative methods tailored to efficiently design optimized molecules derived from existing lead compounds. However, existing methods often encounter difficulties in generating diverse, novel, and high-property molecules that simultaneously optimize multiple drug properties. To overcome this bottleneck, we propose a multiobjective molecule optimization framework (MOMO). MOMO employs a specially designed Pareto-based multiproperty evaluation strategy at the molecular sequence level to guide the evolutionary search in an implicit chemical space. A comparative analysis of MOMO with five state-of-the-art methods across two benchmark multiproperty molecule optimization tasks reveals that MOMO markedly outperforms them in terms of diversity, novelty, and optimized properties. The practical applicability of MOMO in drug discovery has also been validated on four challenging tasks in the real-world discovery problem. These results suggest that MOMO can provide a useful tool to facilitate molecule optimization problems with multiple properties.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Multiobjective Molecule Optimization in an Implicit Chemical Space\",\"authors\":\"Xin Xia,&nbsp;Yiping Liu,&nbsp;Chunhou Zheng,&nbsp;Xingyi Zhang,&nbsp;Qingwen Wu,&nbsp;Xin Gao,&nbsp;Xiangxiang Zeng* and Yansen Su*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optimization techniques play a pivotal role in advancing drug development, serving as the foundation of numerous generative methods tailored to efficiently design optimized molecules derived from existing lead compounds. However, existing methods often encounter difficulties in generating diverse, novel, and high-property molecules that simultaneously optimize multiple drug properties. To overcome this bottleneck, we propose a multiobjective molecule optimization framework (MOMO). MOMO employs a specially designed Pareto-based multiproperty evaluation strategy at the molecular sequence level to guide the evolutionary search in an implicit chemical space. A comparative analysis of MOMO with five state-of-the-art methods across two benchmark multiproperty molecule optimization tasks reveals that MOMO markedly outperforms them in terms of diversity, novelty, and optimized properties. The practical applicability of MOMO in drug discovery has also been validated on four challenging tasks in the real-world discovery problem. These results suggest that MOMO can provide a useful tool to facilitate molecule optimization problems with multiple properties.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00031\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

优化技术在推动药物开发方面发挥着举足轻重的作用,它是众多生成方法的基础,这些生成方法旨在从现有先导化合物中高效设计出优化分子。然而,现有方法在生成同时优化多种药物特性的多样化、新颖和高特性分子时往往会遇到困难。为了克服这一瓶颈,我们提出了多目标分子优化框架(MOMO)。MOMO 在分子序列层面采用了专门设计的基于帕累托的多性能评估策略,以指导隐含化学空间中的进化搜索。在两个基准多属性分子优化任务中,MOMO 与五种最先进的方法进行了对比分析,结果表明,MOMO 在多样性、新颖性和优化属性方面明显优于这些方法。MOMO 在药物发现中的实际应用性也在实际发现问题中的四个挑战性任务中得到了验证。这些结果表明,MOMO 可以为促进具有多种特性的分子优化问题提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Multiobjective Molecule Optimization in an Implicit Chemical Space

Optimization techniques play a pivotal role in advancing drug development, serving as the foundation of numerous generative methods tailored to efficiently design optimized molecules derived from existing lead compounds. However, existing methods often encounter difficulties in generating diverse, novel, and high-property molecules that simultaneously optimize multiple drug properties. To overcome this bottleneck, we propose a multiobjective molecule optimization framework (MOMO). MOMO employs a specially designed Pareto-based multiproperty evaluation strategy at the molecular sequence level to guide the evolutionary search in an implicit chemical space. A comparative analysis of MOMO with five state-of-the-art methods across two benchmark multiproperty molecule optimization tasks reveals that MOMO markedly outperforms them in terms of diversity, novelty, and optimized properties. The practical applicability of MOMO in drug discovery has also been validated on four challenging tasks in the real-world discovery problem. These results suggest that MOMO can provide a useful tool to facilitate molecule optimization problems with multiple properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Riboflavin-Induced DNA Damage and Anticancer Activity in Breast Cancer Cells under Visible Light: A TD-DFT and In Vitro Study. DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression. Enhancing Chemical Reaction Monitoring with a Deep Learning Model for NMR Spectra Image Matching to Target Compounds. CageCavityCalc (C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1