Haotian Zhang , Jun Xu , Shiwen Liu , Hongbo Li , Lianlian Xu , Suqin Wang
{"title":"基于 Lambda 外切酶选择性消化和 CRISPR/Cas12a 辅助扩增的 MicroRNA-155 检测。","authors":"Haotian Zhang , Jun Xu , Shiwen Liu , Hongbo Li , Lianlian Xu , Suqin Wang","doi":"10.1016/j.ab.2024.115592","DOIUrl":null,"url":null,"abstract":"<div><p>In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5′ phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze <em>trans</em>-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of MicroRNA-155 based on lambda exonuclease selective digestion and CRISPR/cas12a-assisted amplification\",\"authors\":\"Haotian Zhang , Jun Xu , Shiwen Liu , Hongbo Li , Lianlian Xu , Suqin Wang\",\"doi\":\"10.1016/j.ab.2024.115592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5′ phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze <em>trans</em>-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Detection of MicroRNA-155 based on lambda exonuclease selective digestion and CRISPR/cas12a-assisted amplification
In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5′ phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze trans-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.