MAPK 同源物 Smk1 可促进 S. cerevisiae 孢子壁葡聚糖层的组装。

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Yeast Pub Date : 2024-07-01 Epub Date: 2024-06-14 DOI:10.1002/yea.3967
Julia Y Lee-Soety, Gwendolyn Resch, Abhimannyu Rimal, Erica S Johnson, Jonathan Benway, Edward Winter
{"title":"MAPK 同源物 Smk1 可促进 S. cerevisiae 孢子壁葡聚糖层的组装。","authors":"Julia Y Lee-Soety, Gwendolyn Resch, Abhimannyu Rimal, Erica S Johnson, Jonathan Benway, Edward Winter","doi":"10.1002/yea.3967","DOIUrl":null,"url":null,"abstract":"<p><p>Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"448-457"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230851/pdf/","citationCount":"0","resultStr":"{\"title\":\"The MAPK homolog, Smk1, promotes assembly of the glucan layer of the spore wall in S. cerevisiae.\",\"authors\":\"Julia Y Lee-Soety, Gwendolyn Resch, Abhimannyu Rimal, Erica S Johnson, Jonathan Benway, Edward Winter\",\"doi\":\"10.1002/yea.3967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.</p>\",\"PeriodicalId\":23870,\"journal\":{\"name\":\"Yeast\",\"volume\":\" \",\"pages\":\"448-457\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yeast\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/yea.3967\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3967","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Smk1 是酵母中的 MAPK 同源物,它控制着孢子壁组装的减数分裂后程序。在该程序中,单倍体细胞被一层甘露聚糖和一层葡聚糖包围。孢子壁的这些内层与无性细胞壁相似。接着,由几丁质/壳聚糖和酪氨酸组成的外层开始形成。外层具有孢子特异性,能抵御环境压力。孢子壁的正常组装需要 Smk1。然而,外层的保护特性限制了我们对 Smk1 如何控制这一形态发生程序的了解。缺乏几丁质脱乙酰化酶 Cda1 和 Cda2 的突变体形成的孢子缺乏孢子壁外层。本研究利用 cda1,2∆ 细胞证明 Smk1 可通过部分冗余的葡聚糖合成酶 Gsc2 和 Fks3 促进孢子壁葡聚糖层的沉积。虽然野生型的 Gsc2 定位于孢子壁的组装位点,但在 smk1∆ 突变体中,它被错误地定位在母细胞胞质中。这些发现表明,在孢子发生过程中,Smk1 通过调节 Gsc2 的定位来控制孢子壁的组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The MAPK homolog, Smk1, promotes assembly of the glucan layer of the spore wall in S. cerevisiae.

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
期刊最新文献
The Hidden Global Diversity of the Yeast Genus Carlosrosaea: A Biodiversity Databases Perspective. Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. pSPObooster: A Plasmid System to Improve Sporulation Efficiency of Saccharomyces cerevisiae Lab Strains. The 5-Fluorouracil RNA Expression Viewer (5-FUR) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1