在 FPGA 上实现章鱼细胞的开关和学习行为。

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-04-25 DOI:10.3934/mbe.2024254
Alexej Tschumak, Frank Feldhoff, Frank Klefenz
{"title":"在 FPGA 上实现章鱼细胞的开关和学习行为。","authors":"Alexej Tschumak, Frank Feldhoff, Frank Klefenz","doi":"10.3934/mbe.2024254","DOIUrl":null,"url":null,"abstract":"<p><p>A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5762-5781"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The switching and learning behavior of an octopus cell implemented on FPGA.\",\"authors\":\"Alexej Tschumak, Frank Feldhoff, Frank Klefenz\",\"doi\":\"10.3934/mbe.2024254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 4\",\"pages\":\"5762-5781\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024254\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024254","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们基于时间逻辑为单个章鱼神经元推导出了一种树枝状反向传播尖峰计时可塑性学习规则。在训练过程中,它接收平行的尖峰列车,并在 [0, 1] 范围内集体调整其突触权重。训练阶段结束后,神经元会对感觉流中的事件信号输入模式作出尖峰反应。章鱼细胞的学习和切换行为是通过现场可编程门阵列(FPGA)硬件实现的。文中介绍了在 FPGA 中的应用,并给出了通过向其输入尖峰耳蜗图而获得的在硬件中应用的概念验证;此外,还通过与预先计算的标准软件仿真结果进行比较进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The switching and learning behavior of an octopus cell implemented on FPGA.

A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Multiscale modelling of hepatitis B virus at cell level of organization. Global sensitivity analysis and uncertainty quantification for a mathematical model of dry anaerobic digestion in plug-flow reactors. Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study. Mathematical modeling of infectious diseases and the impact of vaccination strategies. Retraction notice to "A novel architecture design for artificial intelligence-assisted culture conservation management system" [Mathematical Biosciences and Engineering 20(6) (2023) 9693-9711].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1