基于智能手机检测口腔癌多胺的简单有效方法。

Asmita Mojumdar, Unnikrishnan B S, Gopinath Packirisamy
{"title":"基于智能手机检测口腔癌多胺的简单有效方法。","authors":"Asmita Mojumdar, Unnikrishnan B S, Gopinath Packirisamy","doi":"10.1088/1748-605X/ad581a","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of the<i>R</i>-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple and effective method for smartphone-based detection of polyamines in oral cancer.\",\"authors\":\"Asmita Mojumdar, Unnikrishnan B S, Gopinath Packirisamy\",\"doi\":\"10.1088/1748-605X/ad581a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of the<i>R</i>-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad581a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad581a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在印度,口腔癌占所有癌症相关死亡的 50-70%,在全球最常见的癌症中排名第六。大约 90% 的口腔恶性肿瘤在组织学上源于鳞状细胞,因此被称为口腔鳞状细胞癌。被称为生物多胺的有机多阳离子,如腐胺(Put)、亚精胺(Spd)和精胺(Spm),对细胞增殖至关重要,包括基因表达控制、内切酶介导的 DNA 断裂调节和 DNA 损伤抑制。较高的 Spm 和 Spd 水平已被确定为癌症生物标志物,可用于检测各种癌症的肿瘤发展情况。本研究利用多酚化合物单宁酸作为还原剂和封端剂,通过一步微波辅助合成法制备 AuNPs。制备的 TA@AuNPs 被用作纳米探针,对 PBS 中的多胺进行比色传感。当 TA@AuNPs 添加到多胺中时,多胺中的胺基团会通过氢键或静电作用与 TA@AuNPs 的酚基团相互作用。这些相互作用引起 TA@AuNPs 的聚集,导致 TA@AuNPs 的表面等离子体共振(SPR)波段从 530 纳米红移到 560 纳米。该纳米探针在低浓度下对 Spm 具有高度特异性。TA@AuNPs 能够成功检测人工唾液样本中的 Spm。在使用智能手机应用程序记录传感过程的 RGB 值时发现,由于 Spm 的存在,纳米粒子发生了聚集,R 值的强度降低,这表明 TA@AuNPs 与多胺相互作用而发生了聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple and effective method for smartphone-based detection of polyamines in oral cancer.

Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of theR-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalisation of the yield stress measurement in three point bending collapse tests: application to 3D printed flax fibre reinforced hydrogels. Hyaluronic acid modified Cu/Mn-doped metal-organic framework nanocatalyst for chemodynamic therapy. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. MPS blockade with liposomes controls pharmacokinetics of nanoparticles in a size-dependent manner. Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1