James T Redden, Jingyao Deng, David J Cohen, Zvi Schwartz, Michael J McClure
{"title":"肌肉纤维化、NF-κB 和 TGF-β 在两种瘫痪模型(肉毒杆菌毒素与神经切除术)中发生了不同程度的改变。","authors":"James T Redden, Jingyao Deng, David J Cohen, Zvi Schwartz, Michael J McClure","doi":"10.1089/wound.2024.0045","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b>: Volumetric muscle loss results in intramuscular axotomy, denervating muscle distal to the injury and leading to paralysis, denervation, and loss of muscle function. Once the nerve is damaged, paralyzed skeletal muscle will atrophy and accumulate noncontractile connective tissue. The objective of this study was to determine differences in connective tissue, atrophy, and inflammatory signaling between two paralysis models, botulinum toxin (Botox), which blocks acetylcholine transmission while keeping nerves intact, and neurectomy, which eliminates all nerve-to-muscle signaling. <b>Approach</b>: Twenty male Sprague Dawley rats were randomized and received a sciatic-femoral neurectomy (SFN), Botox-induced muscle paralysis of the proximal femur muscles, quadriceps femoris, hamstrings, and calf muscles (BTX), or sham. Muscle force was measured 52 days postsurgery, and samples were collected for histology, protein, and mRNA assays. <b>Results:</b> SFN and BTX decreased twitch and tetanic force, decreased fiber size by twofold, and increased myogenic expression compared with controls. SFN increased the levels of all major extracellular matrix proteins correlating with fibrosis [<i>e.g.,</i> laminin, fibronectin, and collagen type(s) I, III, VI]. SFN also increased profibrotic and proinflammatory mRNA compared with BTX and controls. <b>Innovation</b>: SFN and BTX were similar in gross morphology and functional deficiencies. However, SFN exhibited a higher amount of fibrosis in histological sections and immunoblotting. The present study shows evidence that nerve signaling changes NF-κB and TGF-β signaling, warranting future studies to determine the mechanisms involved. <b>Conclusion:</b> These data indicate that nerve signaling may influence fibrogenesis following denervation, but the mechanisms involved may differ as a function of the method of paralysis.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Muscle Fibrosis, NF-κB, and TGF-β Are Differentially Altered in Two Models of Paralysis (Botox Versus Neurectomy).\",\"authors\":\"James T Redden, Jingyao Deng, David J Cohen, Zvi Schwartz, Michael J McClure\",\"doi\":\"10.1089/wound.2024.0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b>: Volumetric muscle loss results in intramuscular axotomy, denervating muscle distal to the injury and leading to paralysis, denervation, and loss of muscle function. Once the nerve is damaged, paralyzed skeletal muscle will atrophy and accumulate noncontractile connective tissue. The objective of this study was to determine differences in connective tissue, atrophy, and inflammatory signaling between two paralysis models, botulinum toxin (Botox), which blocks acetylcholine transmission while keeping nerves intact, and neurectomy, which eliminates all nerve-to-muscle signaling. <b>Approach</b>: Twenty male Sprague Dawley rats were randomized and received a sciatic-femoral neurectomy (SFN), Botox-induced muscle paralysis of the proximal femur muscles, quadriceps femoris, hamstrings, and calf muscles (BTX), or sham. Muscle force was measured 52 days postsurgery, and samples were collected for histology, protein, and mRNA assays. <b>Results:</b> SFN and BTX decreased twitch and tetanic force, decreased fiber size by twofold, and increased myogenic expression compared with controls. SFN increased the levels of all major extracellular matrix proteins correlating with fibrosis [<i>e.g.,</i> laminin, fibronectin, and collagen type(s) I, III, VI]. SFN also increased profibrotic and proinflammatory mRNA compared with BTX and controls. <b>Innovation</b>: SFN and BTX were similar in gross morphology and functional deficiencies. However, SFN exhibited a higher amount of fibrosis in histological sections and immunoblotting. The present study shows evidence that nerve signaling changes NF-κB and TGF-β signaling, warranting future studies to determine the mechanisms involved. <b>Conclusion:</b> These data indicate that nerve signaling may influence fibrogenesis following denervation, but the mechanisms involved may differ as a function of the method of paralysis.</p>\",\"PeriodicalId\":7413,\"journal\":{\"name\":\"Advances in wound care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in wound care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/wound.2024.0045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2024.0045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Muscle Fibrosis, NF-κB, and TGF-β Are Differentially Altered in Two Models of Paralysis (Botox Versus Neurectomy).
Objective: Volumetric muscle loss results in intramuscular axotomy, denervating muscle distal to the injury and leading to paralysis, denervation, and loss of muscle function. Once the nerve is damaged, paralyzed skeletal muscle will atrophy and accumulate noncontractile connective tissue. The objective of this study was to determine differences in connective tissue, atrophy, and inflammatory signaling between two paralysis models, botulinum toxin (Botox), which blocks acetylcholine transmission while keeping nerves intact, and neurectomy, which eliminates all nerve-to-muscle signaling. Approach: Twenty male Sprague Dawley rats were randomized and received a sciatic-femoral neurectomy (SFN), Botox-induced muscle paralysis of the proximal femur muscles, quadriceps femoris, hamstrings, and calf muscles (BTX), or sham. Muscle force was measured 52 days postsurgery, and samples were collected for histology, protein, and mRNA assays. Results: SFN and BTX decreased twitch and tetanic force, decreased fiber size by twofold, and increased myogenic expression compared with controls. SFN increased the levels of all major extracellular matrix proteins correlating with fibrosis [e.g., laminin, fibronectin, and collagen type(s) I, III, VI]. SFN also increased profibrotic and proinflammatory mRNA compared with BTX and controls. Innovation: SFN and BTX were similar in gross morphology and functional deficiencies. However, SFN exhibited a higher amount of fibrosis in histological sections and immunoblotting. The present study shows evidence that nerve signaling changes NF-κB and TGF-β signaling, warranting future studies to determine the mechanisms involved. Conclusion: These data indicate that nerve signaling may influence fibrogenesis following denervation, but the mechanisms involved may differ as a function of the method of paralysis.
期刊介绍:
Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds.
Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments.
Advances in Wound Care coverage includes:
Skin bioengineering,
Skin and tissue regeneration,
Acute, chronic, and complex wounds,
Dressings,
Anti-scar strategies,
Inflammation,
Burns and healing,
Biofilm,
Oxygen and angiogenesis,
Critical limb ischemia,
Military wound care,
New devices and technologies.