Ruxandra D. Rotarescu, Mahima Mathur, Ashley M. Bejoy, G. Harvey Anderson, Adam H. Metherel
{"title":"血清中的二十二碳六烯酸 (DHA) 合成量低估了雄性和雌性小鼠全身的 DHA 合成量。","authors":"Ruxandra D. Rotarescu, Mahima Mathur, Ashley M. Bejoy, G. Harvey Anderson, Adam H. Metherel","doi":"10.1016/j.jnutbio.2024.109689","DOIUrl":null,"url":null,"abstract":"<div><p>Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ<sup>13</sup>C)-n-3 PUFA for four weeks, followed by high δ<sup>13</sup>C-n-3 PUFA for eight weeks (<em>n</em>=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ<sup>13</sup>C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (<em>P</em>>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (<em>P</em><.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955286324001220/pdfft?md5=e8ec3430366a38f27815ab745ed55e00&pid=1-s2.0-S0955286324001220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Serum measures of docosahexaenoic acid (DHA) synthesis underestimates whole body DHA synthesis in male and female mice\",\"authors\":\"Ruxandra D. Rotarescu, Mahima Mathur, Ashley M. Bejoy, G. Harvey Anderson, Adam H. Metherel\",\"doi\":\"10.1016/j.jnutbio.2024.109689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ<sup>13</sup>C)-n-3 PUFA for four weeks, followed by high δ<sup>13</sup>C-n-3 PUFA for eight weeks (<em>n</em>=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ<sup>13</sup>C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (<em>P</em>>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (<em>P</em><.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001220/pdfft?md5=e8ec3430366a38f27815ab745ed55e00&pid=1-s2.0-S0955286324001220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
女性的二十二碳六烯酸(DHA)水平高于男性,这可能是由于α-亚麻酸(ALA)的 DHA 合成率较高。然而,据报道 DHA 的合成率很低,而且还没有在两性之间进行过直接比较。在这里,我们应用一种新的化合物特异性同位素分析模型来确定雄性和雌性小鼠的 n-3 PUFA 合成率,并评估将其应用于人类的可能性。雄性和雌性 C57BL/6N 小鼠被分配到添加了 ALA、二十碳五烯酸 (EPA) 或 DHA 的三种为期 12 周的饮食干预中的一种。这些饮食包括低碳-13(δ13C)-n-3 PUFA 4 周,然后是高碳-13C-n-3 PUFA 8 周(每种饮食、时间点、性别均为 4 只)。饮食转换后,在多个时间点收集血液和组织,测定脂肪酸水平和 δ13C 并拟合单相指数衰减模型。不同性别的肝脏 DHA 合成率没有差异(p>0.05)。然而,从膳食中摄入的 EPA 合成的 n-3 二十二碳五烯酸(DPAn-3)比 DHA 高 66% (p
Serum measures of docosahexaenoic acid (DHA) synthesis underestimates whole body DHA synthesis in male and female mice
Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.