近红外光生物调节对体外红细胞氧化应激易感性的双相剂量反应和影响

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of photochemistry and photobiology. B, Biology Pub Date : 2024-06-11 DOI:10.1016/j.jphotobiol.2024.112958
Tomasz Walski , Karolina Grzeszczuk-Kuć , Joanna Mehl , Raghvendra Bohara , Natalia Trochanowska-Pauk , Jerzy Detyna , Małgorzata Komorowska
{"title":"近红外光生物调节对体外红细胞氧化应激易感性的双相剂量反应和影响","authors":"Tomasz Walski ,&nbsp;Karolina Grzeszczuk-Kuć ,&nbsp;Joanna Mehl ,&nbsp;Raghvendra Bohara ,&nbsp;Natalia Trochanowska-Pauk ,&nbsp;Jerzy Detyna ,&nbsp;Małgorzata Komorowska","doi":"10.1016/j.jphotobiol.2024.112958","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750–1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"257 ","pages":"Article 112958"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biphasic dose-response and effects of near-infrared photobiomodulation on erythrocytes susceptibility to oxidative stress in vitro\",\"authors\":\"Tomasz Walski ,&nbsp;Karolina Grzeszczuk-Kuć ,&nbsp;Joanna Mehl ,&nbsp;Raghvendra Bohara ,&nbsp;Natalia Trochanowska-Pauk ,&nbsp;Jerzy Detyna ,&nbsp;Małgorzata Komorowska\",\"doi\":\"10.1016/j.jphotobiol.2024.112958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750–1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.</p></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"257 \",\"pages\":\"Article 112958\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134424001180\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424001180","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员考察了同时使用叔丁基过氧化氢(tBHP)和多色近红外(NIR)辐射对牛血的影响,以确定近红外光是否会降低红细胞(RBC)对氧化应激的敏感性。研究评估了各种照射方法、波长范围和光学过滤类型。连续的近红外照射显示了无细胞血红蛋白变化的双相反应,在低通量下观察到抗氧化效应,而在高通量下观察到有害效应。最佳照射时间为 60 秒至 15 分钟。还测试了 750-1100 纳米波长范围内的保护效果,所有波长都能减少溶血,尤其是 750 纳米、875 纳米和 900 纳米波长。对宽带近红外光和远红外光(750 纳米)进行比较后发现,两者在减少溶血方面没有显著差异。脉冲剂量的近红外辐照可安全地增加辐射剂量,在持续辐照有害的较高剂量下有效地限制溶血。这些发现凸显了近红外光生物调制在保护红细胞免受氧化应激方面的潜力,并将有助于新型医疗设备的有效设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biphasic dose-response and effects of near-infrared photobiomodulation on erythrocytes susceptibility to oxidative stress in vitro

The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750–1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
期刊最新文献
In vitro photoprotective efficacy and photostability of synthesized star-shaped ZnO nanoaggregates associated with ethylhexyl methoxycinnamate and butyl methoxydibenzoylmethane A tumor-pH-responsive phthalocyanine as activatable type I photosensitizer for improved photodynamic immunotherapy ct-DNA compaction by nanoparticles formed by silica and gemini surfactants having hydroxyl group substituted spacers: In vitro, in vivo, and ex vivo gene uptake to cancer cells Microbiome shifts elicited by ornamental lighting of granite facades identified by MinION sequencing Fabrication of highly biocompatible SiO2@Au-BSA nanoconjugates: Towards a promising thermal therapy route
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1