CsDof1.8-CsLIPOXYGENASE09模块调控黄瓜C9香气的产生。

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-09-02 DOI:10.1093/plphys/kiae338
Yinhui Sun, Xuzhen Li, Hua Wang, Qiongzhi Zhang, Xin Wang, Yanan Jiao, Jie Zhang, Yuying Yang, Wanyu Xue, Yulei Qian, Xiaojiang Zhang, Ruochen Wang, Shuxia Chen
{"title":"CsDof1.8-CsLIPOXYGENASE09模块调控黄瓜C9香气的产生。","authors":"Yinhui Sun, Xuzhen Li, Hua Wang, Qiongzhi Zhang, Xin Wang, Yanan Jiao, Jie Zhang, Yuying Yang, Wanyu Xue, Yulei Qian, Xiaojiang Zhang, Ruochen Wang, Shuxia Chen","doi":"10.1093/plphys/kiae338","DOIUrl":null,"url":null,"abstract":"<p><p>Nine-carbon aldehydes and their relative alcohols (C9 aromas) are the main aroma compounds of cucumber (Cucumis sativus L.) fruits and provide a unique cucumber-like note. However, the key regulators of C9 aroma accumulation in cucumber fruit are poorly characterized. Based on C9 aroma dynamic analysis and transcriptome analysis during fruit development of two different cucumber inbred lines, Q16 and Q24, Lipoxygenase09 (CsLOX09) was identified as a candidate gene for C9 aroma accumulation. Additionally, Q24 with higher CsLOX09 expression accumulated more C9 aromas than Q16. To verify the function of CsLOX09, Cslox09 homozygote knockout lines were created. C9 aroma content decreased by 80.79% to 99.16% in these mutants compared to the wild type. To further explore the reasons for the difference in CsLOX09 expression between Q16 and Q24 fruits, a co-expression network was constructed by integrating the C9 aroma-associated metabolism and transcriptomic data. Eighteen candidate transcription factors were highly correlated with the expression of CsLOX09. DNA binding with One Finger 1.8 (CsDof1.8) was confirmed to bind directly to the A/TAAAG motif of the CsLOX09 promoter through dual-luciferase, yeast one-hybrid, chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. Furthermore, C9 aroma content and CsLOX09 expression were significantly increased in the CsDof1.8 overexpression lines. Overall, these data elucidate the metabolic regulation of C9 aromas in cucumber and provide a foundation for facilitating the regulation of flavor in cucumber breeding.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CsDof1.8-CsLIPOXYGENASE09 module regulates C9 aroma production in cucumber.\",\"authors\":\"Yinhui Sun, Xuzhen Li, Hua Wang, Qiongzhi Zhang, Xin Wang, Yanan Jiao, Jie Zhang, Yuying Yang, Wanyu Xue, Yulei Qian, Xiaojiang Zhang, Ruochen Wang, Shuxia Chen\",\"doi\":\"10.1093/plphys/kiae338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nine-carbon aldehydes and their relative alcohols (C9 aromas) are the main aroma compounds of cucumber (Cucumis sativus L.) fruits and provide a unique cucumber-like note. However, the key regulators of C9 aroma accumulation in cucumber fruit are poorly characterized. Based on C9 aroma dynamic analysis and transcriptome analysis during fruit development of two different cucumber inbred lines, Q16 and Q24, Lipoxygenase09 (CsLOX09) was identified as a candidate gene for C9 aroma accumulation. Additionally, Q24 with higher CsLOX09 expression accumulated more C9 aromas than Q16. To verify the function of CsLOX09, Cslox09 homozygote knockout lines were created. C9 aroma content decreased by 80.79% to 99.16% in these mutants compared to the wild type. To further explore the reasons for the difference in CsLOX09 expression between Q16 and Q24 fruits, a co-expression network was constructed by integrating the C9 aroma-associated metabolism and transcriptomic data. Eighteen candidate transcription factors were highly correlated with the expression of CsLOX09. DNA binding with One Finger 1.8 (CsDof1.8) was confirmed to bind directly to the A/TAAAG motif of the CsLOX09 promoter through dual-luciferase, yeast one-hybrid, chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. Furthermore, C9 aroma content and CsLOX09 expression were significantly increased in the CsDof1.8 overexpression lines. Overall, these data elucidate the metabolic regulation of C9 aromas in cucumber and provide a foundation for facilitating the regulation of flavor in cucumber breeding.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae338\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae338","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

九碳醛类及其相对醇类(C9 香气)是黄瓜(Cucumis sativus L.)果实的主要香气化合物,具有独特的黄瓜香味。然而,黄瓜果实中 C9 香气积累的关键调控因子却鲜为人知。根据对两个不同黄瓜近交系 Q16 和 Q24 果实发育过程中的 C9 香气动态分析和转录组分析,脂氧合酶09(CsLOX09)被确定为 C9 香气积累的候选基因。此外,CsLOX09表达量较高的Q24比Q16积累了更多的C9香气。为了验证 CsLOX09 的功能,我们创建了 CsLOX09 基因同源剔除系。与野生型相比,这些突变体的 C9 香气含量减少了 80.79%-99.16%。为了进一步探索 Q16 和 Q24 果实中 CsLOX09 表达差异的原因,研究人员整合了 C9 香气相关代谢和转录组数据,构建了共表达网络。18 个候选转录因子与 CsLOX09 的表达高度相关。通过双荧光素酶、酵母单杂交、染色质免疫沉淀-qPCR和电泳迁移实验,证实了一指1.8(CsDof1.8)与CsLOX09启动子的A/TAAAG基序直接结合。此外,CsDof1.8过表达株中的C9香气含量和CsLOX09表达量显著增加。总之,这些数据阐明了黄瓜中 C9 香气的代谢调控,为促进黄瓜育种中的香气调控提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The CsDof1.8-CsLIPOXYGENASE09 module regulates C9 aroma production in cucumber.

Nine-carbon aldehydes and their relative alcohols (C9 aromas) are the main aroma compounds of cucumber (Cucumis sativus L.) fruits and provide a unique cucumber-like note. However, the key regulators of C9 aroma accumulation in cucumber fruit are poorly characterized. Based on C9 aroma dynamic analysis and transcriptome analysis during fruit development of two different cucumber inbred lines, Q16 and Q24, Lipoxygenase09 (CsLOX09) was identified as a candidate gene for C9 aroma accumulation. Additionally, Q24 with higher CsLOX09 expression accumulated more C9 aromas than Q16. To verify the function of CsLOX09, Cslox09 homozygote knockout lines were created. C9 aroma content decreased by 80.79% to 99.16% in these mutants compared to the wild type. To further explore the reasons for the difference in CsLOX09 expression between Q16 and Q24 fruits, a co-expression network was constructed by integrating the C9 aroma-associated metabolism and transcriptomic data. Eighteen candidate transcription factors were highly correlated with the expression of CsLOX09. DNA binding with One Finger 1.8 (CsDof1.8) was confirmed to bind directly to the A/TAAAG motif of the CsLOX09 promoter through dual-luciferase, yeast one-hybrid, chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. Furthermore, C9 aroma content and CsLOX09 expression were significantly increased in the CsDof1.8 overexpression lines. Overall, these data elucidate the metabolic regulation of C9 aromas in cucumber and provide a foundation for facilitating the regulation of flavor in cucumber breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Developmental responses of roots to limited phosphate availability: research progress and application in cereals Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato The transcriptional integration of environmental cues with root cell type development Lysine acetylation regulates the subcellular localization and function of WRKY63. Spatial sugar separation is key to how fast you get old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1