{"title":"用于在合成废水中选择性富集节杆菌的 faujasite 沸石膜的合成与表征。","authors":"Abderrazek El-Kordy, Heba M Kanzy, Abdelaziz Elgamouz, Mohamed Douma, Hamid Mazouz, Abdel-Nasser Kawde, Najib Tijani","doi":"10.2166/wst.2024.175","DOIUrl":null,"url":null,"abstract":"<p><p>This paper centers on the preparation and characterization of both a clay support and a faujasite zeolite membrane. Additionally, the study explores the development of bacterial media to assess the performance of these prepared membranes. The faujasite zeolite membrane was created using the hydrothermal method, involving the deposition of a faujasite layer to fine-tune the pore sizes of the clay support. The clay supports were crafted from clay which was sieved to particle size Φ ≤ 63 μm, and compacted with 3.0 wt.% activated carbon, then sintered at 1,000 °C. Distilled water fluxes revealed a decrease from 1,500 L m<sup>-2</sup> h<sup>-1</sup> to a minimum of 412 L m<sup>-2</sup> h<sup>-1</sup> after 180 min of filtration. Both membranes were characterized by XRF, XRD, FTIR, adsorption-desorption of nitrogen (N<sub>2</sub>), and SEM-EDS. PCR technique was used for the identification of the isolated <i>Arthrobacter</i> sp., and the retention of the bacteria on the clay support and the faujasite zeolite membrane were found to be 96 and 99%, respectively. The results showed that the faujasite zeolite membrane passed the clay support due to a narrow pore size of the faujasite zeolite membrane of 2.28 nm compared to 3.55 nm for the clay supports.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of faujasite zeolite membrane for selective enrichment of <i>Arthrobacter</i> sp. in synthetic wastewater.\",\"authors\":\"Abderrazek El-Kordy, Heba M Kanzy, Abdelaziz Elgamouz, Mohamed Douma, Hamid Mazouz, Abdel-Nasser Kawde, Najib Tijani\",\"doi\":\"10.2166/wst.2024.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper centers on the preparation and characterization of both a clay support and a faujasite zeolite membrane. Additionally, the study explores the development of bacterial media to assess the performance of these prepared membranes. The faujasite zeolite membrane was created using the hydrothermal method, involving the deposition of a faujasite layer to fine-tune the pore sizes of the clay support. The clay supports were crafted from clay which was sieved to particle size Φ ≤ 63 μm, and compacted with 3.0 wt.% activated carbon, then sintered at 1,000 °C. Distilled water fluxes revealed a decrease from 1,500 L m<sup>-2</sup> h<sup>-1</sup> to a minimum of 412 L m<sup>-2</sup> h<sup>-1</sup> after 180 min of filtration. Both membranes were characterized by XRF, XRD, FTIR, adsorption-desorption of nitrogen (N<sub>2</sub>), and SEM-EDS. PCR technique was used for the identification of the isolated <i>Arthrobacter</i> sp., and the retention of the bacteria on the clay support and the faujasite zeolite membrane were found to be 96 and 99%, respectively. The results showed that the faujasite zeolite membrane passed the clay support due to a narrow pore size of the faujasite zeolite membrane of 2.28 nm compared to 3.55 nm for the clay supports.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.175\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.175","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Synthesis and characterization of faujasite zeolite membrane for selective enrichment of Arthrobacter sp. in synthetic wastewater.
This paper centers on the preparation and characterization of both a clay support and a faujasite zeolite membrane. Additionally, the study explores the development of bacterial media to assess the performance of these prepared membranes. The faujasite zeolite membrane was created using the hydrothermal method, involving the deposition of a faujasite layer to fine-tune the pore sizes of the clay support. The clay supports were crafted from clay which was sieved to particle size Φ ≤ 63 μm, and compacted with 3.0 wt.% activated carbon, then sintered at 1,000 °C. Distilled water fluxes revealed a decrease from 1,500 L m-2 h-1 to a minimum of 412 L m-2 h-1 after 180 min of filtration. Both membranes were characterized by XRF, XRD, FTIR, adsorption-desorption of nitrogen (N2), and SEM-EDS. PCR technique was used for the identification of the isolated Arthrobacter sp., and the retention of the bacteria on the clay support and the faujasite zeolite membrane were found to be 96 and 99%, respectively. The results showed that the faujasite zeolite membrane passed the clay support due to a narrow pore size of the faujasite zeolite membrane of 2.28 nm compared to 3.55 nm for the clay supports.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.