用于研究通过微波照射抑制疟原虫生长的低成本便携式设备

IF 2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC HardwareX Pub Date : 2024-06-06 DOI:10.1016/j.ohx.2024.e00540
Esteban Rua , Lorena Coronado , Carlos A. Donado Morcillo , Ricardo Correa , Lina Solís , Carmenza Spadafora , Alejandro Von Chong
{"title":"用于研究通过微波照射抑制疟原虫生长的低成本便携式设备","authors":"Esteban Rua ,&nbsp;Lorena Coronado ,&nbsp;Carlos A. Donado Morcillo ,&nbsp;Ricardo Correa ,&nbsp;Lina Solís ,&nbsp;Carmenza Spadafora ,&nbsp;Alejandro Von Chong","doi":"10.1016/j.ohx.2024.e00540","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, a novel method for the growth inhibition of malaria parasites using microwaves was proposed. However, the apparatuses used to demonstrate this method are high-cost and immovable, hindering the progression in this field of research, which is still in its early stages. This paper presents the redesign, construction, and validation of an equivalent system, converting it into a portable and low-cost system, capable of replacing the existing one. The proposed system is mainly composed of an RF generator (MAX2870), an RF amplifier (SKYWORKS 66292-11) and a graphical user interface. Likewise, the RF applicator proposed by the original study was redesigned, resulting in a five-fold improvement in return loss. The obtained results indicate that the proposed system achieves 90% parasite growth inhibition, matching the performance of its counterpart at less than 1% of its cost. These results represent a breakthrough for the creation of smaller, enhanced devices that open new possibilities for an alternative treatment to combat this devastating disease.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00540"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000348/pdfft?md5=bf21b4a594515c26c17691b57adc7241&pid=1-s2.0-S2468067224000348-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A low-cost, portable device for the study of the malaria parasite’s growth inhibition via microwave exposure\",\"authors\":\"Esteban Rua ,&nbsp;Lorena Coronado ,&nbsp;Carlos A. Donado Morcillo ,&nbsp;Ricardo Correa ,&nbsp;Lina Solís ,&nbsp;Carmenza Spadafora ,&nbsp;Alejandro Von Chong\",\"doi\":\"10.1016/j.ohx.2024.e00540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, a novel method for the growth inhibition of malaria parasites using microwaves was proposed. However, the apparatuses used to demonstrate this method are high-cost and immovable, hindering the progression in this field of research, which is still in its early stages. This paper presents the redesign, construction, and validation of an equivalent system, converting it into a portable and low-cost system, capable of replacing the existing one. The proposed system is mainly composed of an RF generator (MAX2870), an RF amplifier (SKYWORKS 66292-11) and a graphical user interface. Likewise, the RF applicator proposed by the original study was redesigned, resulting in a five-fold improvement in return loss. The obtained results indicate that the proposed system achieves 90% parasite growth inhibition, matching the performance of its counterpart at less than 1% of its cost. These results represent a breakthrough for the creation of smaller, enhanced devices that open new possibilities for an alternative treatment to combat this devastating disease.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"19 \",\"pages\":\"Article e00540\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000348/pdfft?md5=bf21b4a594515c26c17691b57adc7241&pid=1-s2.0-S2468067224000348-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,有人提出了一种利用微波抑制疟原虫生长的新方法。然而,用于演示这种方法的仪器成本高且无法移动,阻碍了这一仍处于早期阶段的研究领域的进展。本文介绍了一个等效系统的重新设计、构建和验证,将其转换成一个便携式低成本系统,能够取代现有系统。拟议的系统主要由一个射频发生器(MAX2870)、一个射频放大器(SKYWORKS 66292-11)和一个图形用户界面组成。同样,对原研究提出的射频应用器也进行了重新设计,使回波损耗提高了五倍。研究结果表明,建议的系统能抑制 90% 的寄生虫生长,与同类产品性能相当,而成本却不到其 1%。这些结果标志着在制造更小、更强的设备方面取得了突破性进展,为采用替代疗法防治这种毁灭性疾病提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low-cost, portable device for the study of the malaria parasite’s growth inhibition via microwave exposure

Recently, a novel method for the growth inhibition of malaria parasites using microwaves was proposed. However, the apparatuses used to demonstrate this method are high-cost and immovable, hindering the progression in this field of research, which is still in its early stages. This paper presents the redesign, construction, and validation of an equivalent system, converting it into a portable and low-cost system, capable of replacing the existing one. The proposed system is mainly composed of an RF generator (MAX2870), an RF amplifier (SKYWORKS 66292-11) and a graphical user interface. Likewise, the RF applicator proposed by the original study was redesigned, resulting in a five-fold improvement in return loss. The obtained results indicate that the proposed system achieves 90% parasite growth inhibition, matching the performance of its counterpart at less than 1% of its cost. These results represent a breakthrough for the creation of smaller, enhanced devices that open new possibilities for an alternative treatment to combat this devastating disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
期刊最新文献
Portable pressure chamber for manual camera-assisted monitoring of leaf water potential A portable low-cost polymerase chain reaction device Low-cost composite autosampler for wastewater sampling ScientISST CORE: A novel hardware development platform for biomedical engineering A portable electrical impedance tomography based pressure mapping sensor and force localisation validation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1