银等离子方形纳米孔阵列中的光传输数值研究及其在绝缘窗中的应用

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-06-14 DOI:10.1016/j.solener.2024.112647
Jeremy Fleury, Léo Ferrand, Andreas Schüler
{"title":"银等离子方形纳米孔阵列中的光传输数值研究及其在绝缘窗中的应用","authors":"Jeremy Fleury,&nbsp;Léo Ferrand,&nbsp;Andreas Schüler","doi":"10.1016/j.solener.2024.112647","DOIUrl":null,"url":null,"abstract":"<div><p>Energy-efficient windows are being used to increase the thermal insulation of a façade. Such insulating windows contain an ultra-thin, multilayered, transparent silver coating that acts as an infrared mirror which significantly reduces thermal losses that occur through radiation from inside the building. These so-called low-emissivity coatings revolutionized the field of building insulation but also decreased solar heat gain coefficient which reduces the potential for energy savings during winter. Insulating windows in cold climates should achieve a selective behavior in the transmittance of EM waves. Ideally, solar energy should be transmitted and mid-infrared radiation reflected, thus reducing the heating needs in buildings. This scientific paper presents a numerical investigation based on finite-difference time-domain (FDTD) focused on the optical transmission characteristics of silver plasmonic square nanohole arrays and explores their potential application in insulating windows. It is found that a nanohole array with a periodicity of 350 nm and a linewidth of 50 nm gives outstanding properties and represents a good candidate to achieve high solar heat gain in low-e coatings. The findings contribute to the understanding of plasmonic effects in nanohole arrays and offer insights into the practical application of such structures in the development of advanced insulating windows with enhanced optical performance.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038092X24003426/pdfft?md5=1da2434d0f79bf5f53819579727463c4&pid=1-s2.0-S0038092X24003426-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical study of optical transmission in silver plasmonic square nanohole arrays and its application to insulating windows\",\"authors\":\"Jeremy Fleury,&nbsp;Léo Ferrand,&nbsp;Andreas Schüler\",\"doi\":\"10.1016/j.solener.2024.112647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy-efficient windows are being used to increase the thermal insulation of a façade. Such insulating windows contain an ultra-thin, multilayered, transparent silver coating that acts as an infrared mirror which significantly reduces thermal losses that occur through radiation from inside the building. These so-called low-emissivity coatings revolutionized the field of building insulation but also decreased solar heat gain coefficient which reduces the potential for energy savings during winter. Insulating windows in cold climates should achieve a selective behavior in the transmittance of EM waves. Ideally, solar energy should be transmitted and mid-infrared radiation reflected, thus reducing the heating needs in buildings. This scientific paper presents a numerical investigation based on finite-difference time-domain (FDTD) focused on the optical transmission characteristics of silver plasmonic square nanohole arrays and explores their potential application in insulating windows. It is found that a nanohole array with a periodicity of 350 nm and a linewidth of 50 nm gives outstanding properties and represents a good candidate to achieve high solar heat gain in low-e coatings. The findings contribute to the understanding of plasmonic effects in nanohole arrays and offer insights into the practical application of such structures in the development of advanced insulating windows with enhanced optical performance.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24003426/pdfft?md5=1da2434d0f79bf5f53819579727463c4&pid=1-s2.0-S0038092X24003426-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24003426\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24003426","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

节能窗被用来提高外墙的隔热性能。这种隔热窗上有一层超薄、多层、透明的银色涂层,它就像一面红外镜,能显著减少建筑物内部辐射造成的热损失。这些所谓的低辐射涂层给建筑隔热领域带来了革命性的变化,但同时也降低了太阳辐射热获得系数,从而降低了冬季节能的潜力。寒冷气候条件下的隔热窗户应在电磁波的透射率方面具有选择性。理想情况下,太阳能应该被透射,中红外辐射应该被反射,从而减少建筑物的供暖需求。这篇科学论文基于有限差分时域(FDTD)对银质子方形纳米孔阵列的光学传输特性进行了数值研究,并探讨了它们在隔热窗中的潜在应用。研究发现,周期为 350 nm、线宽为 50 nm 的纳米孔阵列具有出色的特性,是在低辐射涂层中实现高太阳辐射热增益的理想选择。这些发现有助于理解纳米孔阵列中的等离子效应,并为此类结构在开发具有更高光性能的先进隔热窗中的实际应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study of optical transmission in silver plasmonic square nanohole arrays and its application to insulating windows

Energy-efficient windows are being used to increase the thermal insulation of a façade. Such insulating windows contain an ultra-thin, multilayered, transparent silver coating that acts as an infrared mirror which significantly reduces thermal losses that occur through radiation from inside the building. These so-called low-emissivity coatings revolutionized the field of building insulation but also decreased solar heat gain coefficient which reduces the potential for energy savings during winter. Insulating windows in cold climates should achieve a selective behavior in the transmittance of EM waves. Ideally, solar energy should be transmitted and mid-infrared radiation reflected, thus reducing the heating needs in buildings. This scientific paper presents a numerical investigation based on finite-difference time-domain (FDTD) focused on the optical transmission characteristics of silver plasmonic square nanohole arrays and explores their potential application in insulating windows. It is found that a nanohole array with a periodicity of 350 nm and a linewidth of 50 nm gives outstanding properties and represents a good candidate to achieve high solar heat gain in low-e coatings. The findings contribute to the understanding of plasmonic effects in nanohole arrays and offer insights into the practical application of such structures in the development of advanced insulating windows with enhanced optical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Experimental study of the solar chimney effect in naturally ventilated BIPV cladding system under real operating condition Exploring the influence of switching frequency on the stability in a weak grid: A comprehensive analysis of grid-connected photovoltaic systems Experimental study and simulation of Hybrid-Active solar thermal cylindrical chamber for Citrus Hystrix leaves drying High-efficiency 3D solar evaporators with the PSAVF strategy for achieving excellent salt resistance Design of multi-objective optimized dynamic photovoltaic shades and thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1