不同热同流温度下的铁微粒点火

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-01-01 DOI:10.1016/j.proci.2024.105261
Muhammed Abdallah, Y. Shoshin, G. Finotello, L.P.H. de Goey
{"title":"不同热同流温度下的铁微粒点火","authors":"Muhammed Abdallah,&nbsp;Y. Shoshin,&nbsp;G. Finotello,&nbsp;L.P.H. de Goey","doi":"10.1016/j.proci.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the ignition of iron particle combustion in hot environments is critical for harnessing the use of metal fuels in clean energy production. In this research work, a new single particle burner is implemented to disperse and burn iron particles using hot air coflow. The burner disperses iron particles through Coulomb forces between two air-spaced capacitor electrodes. The oxidizer coflow is heated up as it passes through a newly designed induction gas heater. Electromagnetic induction is used to heat up multiple metallic and porous heat discs by Joule heating. When the coflow gas passes through the pores of the discs, it carries the heat generated within the porous discs and delivers it to the travelling iron particles which provides ultimate heat transfer effectiveness. Coflow temperature homogeneity is examined using Schlieren imaging and confirmed by thermocouple measurements at the outlet of the coflow tube. Particle ignition and combustion occur in open space, providing excellent conditions for optical diagnostics. Two synchronized high-speed cameras were used to simultaneously determine the particle size using green laser shadowgraphy and detect iron particles ignition. Iron particles ignition experiments were conducted for a sieved patch (45–53 μm) at different hot coflow temperatures starting at 700℃ up to 900℃. The burner showed extensive capabilities to maintains a stable and homogeneous hot coflow for a wide range of temperatures up to 900℃. Ignition experiments showed 5.67 % of ejected particles are burnt at 700 ℃, while full ignition (99.33 %) can be achieved at 900 ℃.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"40 1","pages":"Article 105261"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron particles ignition in different hot coflow temperatures\",\"authors\":\"Muhammed Abdallah,&nbsp;Y. Shoshin,&nbsp;G. Finotello,&nbsp;L.P.H. de Goey\",\"doi\":\"10.1016/j.proci.2024.105261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the ignition of iron particle combustion in hot environments is critical for harnessing the use of metal fuels in clean energy production. In this research work, a new single particle burner is implemented to disperse and burn iron particles using hot air coflow. The burner disperses iron particles through Coulomb forces between two air-spaced capacitor electrodes. The oxidizer coflow is heated up as it passes through a newly designed induction gas heater. Electromagnetic induction is used to heat up multiple metallic and porous heat discs by Joule heating. When the coflow gas passes through the pores of the discs, it carries the heat generated within the porous discs and delivers it to the travelling iron particles which provides ultimate heat transfer effectiveness. Coflow temperature homogeneity is examined using Schlieren imaging and confirmed by thermocouple measurements at the outlet of the coflow tube. Particle ignition and combustion occur in open space, providing excellent conditions for optical diagnostics. Two synchronized high-speed cameras were used to simultaneously determine the particle size using green laser shadowgraphy and detect iron particles ignition. Iron particles ignition experiments were conducted for a sieved patch (45–53 μm) at different hot coflow temperatures starting at 700℃ up to 900℃. The burner showed extensive capabilities to maintains a stable and homogeneous hot coflow for a wide range of temperatures up to 900℃. Ignition experiments showed 5.67 % of ejected particles are burnt at 700 ℃, while full ignition (99.33 %) can be achieved at 900 ℃.</p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"40 1\",\"pages\":\"Article 105261\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748924000713\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748924000713","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

了解铁颗粒在高温环境中的燃烧点火过程对于在清洁能源生产中利用金属燃料至关重要。在这项研究工作中,采用了一种新型单颗粒燃烧器,利用热空气共流分散和燃烧铁颗粒。该燃烧器通过两个空气间隔电容器电极之间的库仑力来分散铁颗粒。氧化剂同向气流通过新设计的感应气体加热器时会被加热。电磁感应通过焦耳加热来加热多个金属和多孔热盘。当气流通过加热盘的孔隙时,气流会携带多孔加热盘内产生的热量,并将热量传递给行进中的铁颗粒,从而达到最佳的传热效果。利用 Schlieren 成像对同流温度均匀性进行检测,并在同流管出口处通过热电偶测量进行确认。粒子点火和燃烧发生在开放空间,为光学诊断提供了极佳的条件。使用两台同步高速照相机,利用绿色激光阴影成像技术同时确定颗粒大小,并检测铁颗粒的点燃情况。在从 700℃ 到 900℃ 的不同热共流温度下,对筛分片(45-53 μm)进行了铁颗粒点火实验。该燃烧器在高达 900℃ 的温度范围内保持稳定和均匀的热同流方面表现出了广泛的能力。点火实验表明,在 700 ℃ 时,5.67% 的喷射颗粒被烧毁,而在 900 ℃ 时可实现完全点火(99.33%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron particles ignition in different hot coflow temperatures

Understanding the ignition of iron particle combustion in hot environments is critical for harnessing the use of metal fuels in clean energy production. In this research work, a new single particle burner is implemented to disperse and burn iron particles using hot air coflow. The burner disperses iron particles through Coulomb forces between two air-spaced capacitor electrodes. The oxidizer coflow is heated up as it passes through a newly designed induction gas heater. Electromagnetic induction is used to heat up multiple metallic and porous heat discs by Joule heating. When the coflow gas passes through the pores of the discs, it carries the heat generated within the porous discs and delivers it to the travelling iron particles which provides ultimate heat transfer effectiveness. Coflow temperature homogeneity is examined using Schlieren imaging and confirmed by thermocouple measurements at the outlet of the coflow tube. Particle ignition and combustion occur in open space, providing excellent conditions for optical diagnostics. Two synchronized high-speed cameras were used to simultaneously determine the particle size using green laser shadowgraphy and detect iron particles ignition. Iron particles ignition experiments were conducted for a sieved patch (45–53 μm) at different hot coflow temperatures starting at 700℃ up to 900℃. The burner showed extensive capabilities to maintains a stable and homogeneous hot coflow for a wide range of temperatures up to 900℃. Ignition experiments showed 5.67 % of ejected particles are burnt at 700 ℃, while full ignition (99.33 %) can be achieved at 900 ℃.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1