Liudmyla Sukhodub , Mariia Kumeda , Leonid Sukhodub , Oleksandr Tsyndrenko , Oleksandr Petrenko , Volodymyr Prokopiuk , Anton Tkachenko
{"title":"碳和磁性纳米粒子对壳聚糖神经管性能的影响:细胞毒性、药物释放、体内神经再生","authors":"Liudmyla Sukhodub , Mariia Kumeda , Leonid Sukhodub , Oleksandr Tsyndrenko , Oleksandr Petrenko , Volodymyr Prokopiuk , Anton Tkachenko","doi":"10.1016/j.carpta.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to determine the effect of nanoparticles (NPs), namely graphene oxide (GO), multilayer carbon tubes (MWCNTs + Fe), magnetite (Fe<sub>3</sub>O<sub>4</sub>) and <em>in situ</em> forming brushite (DCPD) in chitosan (CS) based matrices on the cytotoxicity, Pregabalin (PG) release, and <em>in vivo</em> behavior of mechanically stabilized conductive nerve conduits (NCs). NPs change the composites’ hydrophilicity in the order: DCPD (46.8) < MWCNT (54.21) ∼ Fe<sub>3</sub>O<sub>4</sub> (54.44) < GO (65.99) and the water contact angle (47–66°) corresponds to the conditions of cell adhesion. NPs of ≤ 150 μg/ml reduce cell adhesion but don't trigger oxidative stress and toxic effects. Magnetite NPs of 300 µg/ml promote apoptosis in nerve cells. The introduction of PG at stage <em>b</em> during the DCPD formation provides the drug release kinetics closest to the zero-order kinetic model. The most electrically conductive GO- and MWCNTs + Fe - containing NCs have a prolonged biodegradation period of about 6 months, which makes them promising for the regeneration of damaged peripheral nerves in humans.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100528"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924001087/pdfft?md5=ee8aefed80f00a35c378c32d30a37bbc&pid=1-s2.0-S2666893924001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of carbon and magnetic nanoparticles on the properties of chitosan-based neural tubes: Cytotoxicity, drug release, In Vivo nerve regeneration\",\"authors\":\"Liudmyla Sukhodub , Mariia Kumeda , Leonid Sukhodub , Oleksandr Tsyndrenko , Oleksandr Petrenko , Volodymyr Prokopiuk , Anton Tkachenko\",\"doi\":\"10.1016/j.carpta.2024.100528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to determine the effect of nanoparticles (NPs), namely graphene oxide (GO), multilayer carbon tubes (MWCNTs + Fe), magnetite (Fe<sub>3</sub>O<sub>4</sub>) and <em>in situ</em> forming brushite (DCPD) in chitosan (CS) based matrices on the cytotoxicity, Pregabalin (PG) release, and <em>in vivo</em> behavior of mechanically stabilized conductive nerve conduits (NCs). NPs change the composites’ hydrophilicity in the order: DCPD (46.8) < MWCNT (54.21) ∼ Fe<sub>3</sub>O<sub>4</sub> (54.44) < GO (65.99) and the water contact angle (47–66°) corresponds to the conditions of cell adhesion. NPs of ≤ 150 μg/ml reduce cell adhesion but don't trigger oxidative stress and toxic effects. Magnetite NPs of 300 µg/ml promote apoptosis in nerve cells. The introduction of PG at stage <em>b</em> during the DCPD formation provides the drug release kinetics closest to the zero-order kinetic model. The most electrically conductive GO- and MWCNTs + Fe - containing NCs have a prolonged biodegradation period of about 6 months, which makes them promising for the regeneration of damaged peripheral nerves in humans.</p></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"8 \",\"pages\":\"Article 100528\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001087/pdfft?md5=ee8aefed80f00a35c378c32d30a37bbc&pid=1-s2.0-S2666893924001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在确定壳聚糖(CS)基质中的纳米粒子(NPs),即氧化石墨烯(GO)、多层碳管(MWCNTs + Fe)、磁铁矿(Fe3O4)和原位形成的刷状石(DCPD)对机械稳定导电神经导管(NCs)的细胞毒性、普瑞巴林(PG)释放和体内行为的影响。NPs 依次改变了复合材料的亲水性:DCPD(46.8)<;MWCNT(54.21)∼ Fe3O4(54.44)<;GO(65.99),水接触角(47-66°)与细胞粘附条件相对应。≤150微克/毫升的NPs可降低细胞粘附性,但不会引发氧化应激和毒性效应。300 µg/ml 的磁铁矿 NPs 会促进神经细胞凋亡。在 DCPD 形成过程的 b 阶段引入 PG,可提供最接近零阶动力学模型的药物释放动力学。导电性最强的 GO 和 MWCNTs + Fe - NCs 的生物降解期长达约 6 个月,因此有望用于人体受损周围神经的再生。
The effect of carbon and magnetic nanoparticles on the properties of chitosan-based neural tubes: Cytotoxicity, drug release, In Vivo nerve regeneration
This study aims to determine the effect of nanoparticles (NPs), namely graphene oxide (GO), multilayer carbon tubes (MWCNTs + Fe), magnetite (Fe3O4) and in situ forming brushite (DCPD) in chitosan (CS) based matrices on the cytotoxicity, Pregabalin (PG) release, and in vivo behavior of mechanically stabilized conductive nerve conduits (NCs). NPs change the composites’ hydrophilicity in the order: DCPD (46.8) < MWCNT (54.21) ∼ Fe3O4 (54.44) < GO (65.99) and the water contact angle (47–66°) corresponds to the conditions of cell adhesion. NPs of ≤ 150 μg/ml reduce cell adhesion but don't trigger oxidative stress and toxic effects. Magnetite NPs of 300 µg/ml promote apoptosis in nerve cells. The introduction of PG at stage b during the DCPD formation provides the drug release kinetics closest to the zero-order kinetic model. The most electrically conductive GO- and MWCNTs + Fe - containing NCs have a prolonged biodegradation period of about 6 months, which makes them promising for the regeneration of damaged peripheral nerves in humans.