PN-OWL:从 OWL 2 本体中学习模糊概念内涵的两阶段算法

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Fuzzy Sets and Systems Pub Date : 2024-06-11 DOI:10.1016/j.fss.2024.109048
Franco Alberto Cardillo , Franca Debole , Umberto Straccia
{"title":"PN-OWL:从 OWL 2 本体中学习模糊概念内涵的两阶段算法","authors":"Franco Alberto Cardillo ,&nbsp;Franca Debole ,&nbsp;Umberto Straccia","doi":"10.1016/j.fss.2024.109048","DOIUrl":null,"url":null,"abstract":"<div><p>Given a target class <em>T</em> of an OWL 2 ontology, positive (and possibly negative) examples of <em>T</em>, we address the problem of learning, <em>viz.</em> inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class <em>T</em>.</p><p>To do so, we present <span>PN-OWL</span> which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing <em>recall</em>, without compromising too much <em>precision</em>. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many <em>false positives</em>, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of <em>T</em>, while the N-rules tell why it should not.</p><p><span>PN-OWL</span> then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of <em>T</em> or not.</p><p>We also illustrate the effectiveness of <span>PN-OWL</span> through extensive experimentation.</p></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"490 ","pages":"Article 109048"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies\",\"authors\":\"Franco Alberto Cardillo ,&nbsp;Franca Debole ,&nbsp;Umberto Straccia\",\"doi\":\"10.1016/j.fss.2024.109048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a target class <em>T</em> of an OWL 2 ontology, positive (and possibly negative) examples of <em>T</em>, we address the problem of learning, <em>viz.</em> inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class <em>T</em>.</p><p>To do so, we present <span>PN-OWL</span> which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing <em>recall</em>, without compromising too much <em>precision</em>. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many <em>false positives</em>, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of <em>T</em>, while the N-rules tell why it should not.</p><p><span>PN-OWL</span> then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of <em>T</em> or not.</p><p>We also illustrate the effectiveness of <span>PN-OWL</span> through extensive experimentation.</p></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"490 \",\"pages\":\"Article 109048\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424001945\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424001945","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定 OWL 2 本体的目标类 T 和 T 的正面(可能还有负面)示例,我们要解决的问题是学习问题,即从示例中诱导出模糊类包含规则,这些规则旨在描述被归类为类 T 示例的个体的条件。在 P 阶段,算法学习模糊类别包含规则(P 规则)。这些规则旨在覆盖尽可能多的正面例子,增加召回率,同时又不影响太多的精确度。在 N 阶段,算法会学习模糊类包含规则(N 规则),以尽可能排除 P 阶段所学规则所涵盖的假阳性。PN-OWL 然后通过聚合函数将 P 规则和 N 规则结合起来,最终决定一个个体是否是 T 的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologies

Given a target class T of an OWL 2 ontology, positive (and possibly negative) examples of T, we address the problem of learning, viz. inducing, from the examples, fuzzy class inclusion rules that aim to describe conditions for being an individual classified as an instance of the class T.

To do so, we present PN-OWL which is a two-stage learning algorithm consisting of a P-stage and an N-stage. In the P-stage, the algorithm learns fuzzy class inclusion rules (the P-rules). These rules aim to cover as many positive examples as possible, increasing recall, without compromising too much precision. In the N-stage, the algorithm learns fuzzy class inclusion rules (the N-rules), that try to rule out as many false positives, covered by the rules learnt at the P-stage, as possible. Roughly, the P-rules tell why an individual should be classified as an instance of T, while the N-rules tell why it should not.

PN-OWL then aggregates the P-rules and the N-rules by combining them via an aggregation function to allow for a final decision on whether an individual is an instance of T or not.

We also illustrate the effectiveness of PN-OWL through extensive experimentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
期刊最新文献
Average general fractal dimensions of typical compact metric spaces A note on the cross-migrativity between uninorms and overlap (grouping) functions Combining thresholded real values for designing an artificial neuron in a neural network Nonfragile anti-transitional-asynchrony fault tolerant control for IT2 fuzzy semi-Markov jump systems with actuator failures Learning-enabled event-triggered fuzzy adaptive control of multiagent systems with prescribed performance: A chaos-based privacy-preserving method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1