B. Thapa , L. Darling , D.H. Choi , C.M. Ardohain , A. Firoze , D.G. Aliaga , B.S. Hardiman , S. Fei
{"title":"应用多时卫星图像识别城市树种","authors":"B. Thapa , L. Darling , D.H. Choi , C.M. Ardohain , A. Firoze , D.G. Aliaga , B.S. Hardiman , S. Fei","doi":"10.1016/j.ufug.2024.128409","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate tree inventories are critical for urban forest management but challenging to obtain, as many urban trees are on private property (backyards, etc.) and are excluded from public inventories. Here, we examined the feasibility of tree species identification in a large heterogenous urban area (>850 km<sup>2</sup>) by using multi-temporal PlanetScope images (3.2 m resolution, multi-spectral) and inventory data from more than 20,000 ground observations within the urban forest of the Greater Chicago area. Our approach achieved an overall classification accuracy of 0.60 and 0.71 for 18 species and ten genera, respectively, but varied from moderate to high for certain species (0.59–0.92) and genera (0.61–0.91). In particular, we identified key host tree species (<em>Fraxinus americana</em>, <em>F. pennsylvanica</em>, and <em>Acer saccharinum</em>) for two damaging invasive insects, emerald ash borer (EAB, <em>Agrilus planipennis</em>) and Asian longhorn beetle (ALB, <em>Anoplophora glabripennis</em>), with over 0.80 accuracies. In addition, we demonstrated that including images from the autumn months (September–November), either for a single-season model or a combined multiple-season model, improved the identification accuracy of temperate deciduous trees. Further, the high classification accuracy of support vector machine (SVM) over random forest (RF) and neural network (NN) approaches suggests that future work might benefit from comparing multiple classification methods to select the approach that maximizes species classification accuracy. Our study demonstrated the potential for applying multi-temporal high-resolution images in urban tree classification, which can be used for urban forest management at a large spatial scale.</p></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of multi-temporal satellite imagery for urban tree species identification\",\"authors\":\"B. Thapa , L. Darling , D.H. Choi , C.M. Ardohain , A. Firoze , D.G. Aliaga , B.S. Hardiman , S. Fei\",\"doi\":\"10.1016/j.ufug.2024.128409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate tree inventories are critical for urban forest management but challenging to obtain, as many urban trees are on private property (backyards, etc.) and are excluded from public inventories. Here, we examined the feasibility of tree species identification in a large heterogenous urban area (>850 km<sup>2</sup>) by using multi-temporal PlanetScope images (3.2 m resolution, multi-spectral) and inventory data from more than 20,000 ground observations within the urban forest of the Greater Chicago area. Our approach achieved an overall classification accuracy of 0.60 and 0.71 for 18 species and ten genera, respectively, but varied from moderate to high for certain species (0.59–0.92) and genera (0.61–0.91). In particular, we identified key host tree species (<em>Fraxinus americana</em>, <em>F. pennsylvanica</em>, and <em>Acer saccharinum</em>) for two damaging invasive insects, emerald ash borer (EAB, <em>Agrilus planipennis</em>) and Asian longhorn beetle (ALB, <em>Anoplophora glabripennis</em>), with over 0.80 accuracies. In addition, we demonstrated that including images from the autumn months (September–November), either for a single-season model or a combined multiple-season model, improved the identification accuracy of temperate deciduous trees. Further, the high classification accuracy of support vector machine (SVM) over random forest (RF) and neural network (NN) approaches suggests that future work might benefit from comparing multiple classification methods to select the approach that maximizes species classification accuracy. Our study demonstrated the potential for applying multi-temporal high-resolution images in urban tree classification, which can be used for urban forest management at a large spatial scale.</p></div>\",\"PeriodicalId\":49394,\"journal\":{\"name\":\"Urban Forestry & Urban Greening\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Forestry & Urban Greening\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1618866724002073\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724002073","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Application of multi-temporal satellite imagery for urban tree species identification
Accurate tree inventories are critical for urban forest management but challenging to obtain, as many urban trees are on private property (backyards, etc.) and are excluded from public inventories. Here, we examined the feasibility of tree species identification in a large heterogenous urban area (>850 km2) by using multi-temporal PlanetScope images (3.2 m resolution, multi-spectral) and inventory data from more than 20,000 ground observations within the urban forest of the Greater Chicago area. Our approach achieved an overall classification accuracy of 0.60 and 0.71 for 18 species and ten genera, respectively, but varied from moderate to high for certain species (0.59–0.92) and genera (0.61–0.91). In particular, we identified key host tree species (Fraxinus americana, F. pennsylvanica, and Acer saccharinum) for two damaging invasive insects, emerald ash borer (EAB, Agrilus planipennis) and Asian longhorn beetle (ALB, Anoplophora glabripennis), with over 0.80 accuracies. In addition, we demonstrated that including images from the autumn months (September–November), either for a single-season model or a combined multiple-season model, improved the identification accuracy of temperate deciduous trees. Further, the high classification accuracy of support vector machine (SVM) over random forest (RF) and neural network (NN) approaches suggests that future work might benefit from comparing multiple classification methods to select the approach that maximizes species classification accuracy. Our study demonstrated the potential for applying multi-temporal high-resolution images in urban tree classification, which can be used for urban forest management at a large spatial scale.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.