基于在线评论的动态产品竞争分析

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2024-06-10 DOI:10.1016/j.dss.2024.114268
Lu Zheng , Lin Sun , Zhen He , Shuguang He
{"title":"基于在线评论的动态产品竞争分析","authors":"Lu Zheng ,&nbsp;Lin Sun ,&nbsp;Zhen He ,&nbsp;Shuguang He","doi":"10.1016/j.dss.2024.114268","DOIUrl":null,"url":null,"abstract":"<div><p>Competitive intelligence is vital for enterprises to survive in the market. Recently, online reviews have gained popularity among enterprises and researchers as a means to acquire timely and precise competitive insights. However, extant studies overlook the evolution of competitive information because they do not account for the variation of online reviews and products. In this research, we propose a method for dynamic competitive analysis by concentrating on the changes in products and online reviews. First, products and their related online reviews are analyzed via Dynamic Topic Model to derive product features mentioned in different slices. Second, we use sentiment analysis to estimate product performance and transfer the results into a product competitive relation network. Third, we implement competitive analysis from the perspectives of products and markets based on competitiveness propagation. By tracking the evolution of competitive relations among products, we discover competitors and glean more competitive insights. Lastly, a case study of laptops is used for validation. Experimental results indicate that our method is effective in capturing evolving and potential competitive relations among products.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"183 ","pages":"Article 114268"},"PeriodicalIF":6.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic product competitive analysis based on online reviews\",\"authors\":\"Lu Zheng ,&nbsp;Lin Sun ,&nbsp;Zhen He ,&nbsp;Shuguang He\",\"doi\":\"10.1016/j.dss.2024.114268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Competitive intelligence is vital for enterprises to survive in the market. Recently, online reviews have gained popularity among enterprises and researchers as a means to acquire timely and precise competitive insights. However, extant studies overlook the evolution of competitive information because they do not account for the variation of online reviews and products. In this research, we propose a method for dynamic competitive analysis by concentrating on the changes in products and online reviews. First, products and their related online reviews are analyzed via Dynamic Topic Model to derive product features mentioned in different slices. Second, we use sentiment analysis to estimate product performance and transfer the results into a product competitive relation network. Third, we implement competitive analysis from the perspectives of products and markets based on competitiveness propagation. By tracking the evolution of competitive relations among products, we discover competitors and glean more competitive insights. Lastly, a case study of laptops is used for validation. Experimental results indicate that our method is effective in capturing evolving and potential competitive relations among products.</p></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"183 \",\"pages\":\"Article 114268\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624001015\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001015","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

竞争情报对于企业在市场中生存至关重要。最近,在线评论作为一种及时、准确地获取竞争洞察力的手段,受到了企业和研究人员的青睐。然而,现有的研究由于没有考虑到在线评论和产品的变化而忽视了竞争信息的演变。在本研究中,我们提出了一种通过关注产品和在线评论的变化来进行动态竞争分析的方法。首先,通过动态主题模型分析产品及其相关在线评论,得出不同切片中提及的产品特征。其次,我们利用情感分析来估计产品性能,并将结果转移到产品竞争关系网络中。第三,我们基于竞争力传播,从产品和市场的角度实施竞争力分析。通过跟踪产品间竞争关系的演变,我们发现了竞争对手,并获得了更多的竞争洞察。最后,我们使用笔记本电脑案例进行验证。实验结果表明,我们的方法能有效捕捉产品间不断演变和潜在的竞争关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic product competitive analysis based on online reviews

Competitive intelligence is vital for enterprises to survive in the market. Recently, online reviews have gained popularity among enterprises and researchers as a means to acquire timely and precise competitive insights. However, extant studies overlook the evolution of competitive information because they do not account for the variation of online reviews and products. In this research, we propose a method for dynamic competitive analysis by concentrating on the changes in products and online reviews. First, products and their related online reviews are analyzed via Dynamic Topic Model to derive product features mentioned in different slices. Second, we use sentiment analysis to estimate product performance and transfer the results into a product competitive relation network. Third, we implement competitive analysis from the perspectives of products and markets based on competitiveness propagation. By tracking the evolution of competitive relations among products, we discover competitors and glean more competitive insights. Lastly, a case study of laptops is used for validation. Experimental results indicate that our method is effective in capturing evolving and potential competitive relations among products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
A comparative analysis of the effect of initiative risk statement versus passive risk disclosure on the financing performance of Kickstarter campaigns DeepSecure: A computational design science approach for interpretable threat hunting in cybersecurity decision making Editorial Board Effects of visual-preview and information-sidedness features on website persuasiveness The evolution of organizations and stakeholders for metaverse ecosystems: Editorial for the special issue on metaverse part 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1