{"title":"在弱双折射波导中传播的矢量光脉冲的孤子产生和守恒定律","authors":"J.C. Ndogmo , H.Y. Donkeng","doi":"10.1016/j.wavemoti.2024.103356","DOIUrl":null,"url":null,"abstract":"<div><p>The principal algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of coupled nonlinear Schrödinger equations describing the propagation of polarized optical pulses and involving four-wave mixing terms is obtained in terms of the three arbitrary labelling parameters of the system of equations. This algebra is found to be five-dimensional, indicating the richness in symmetries of the system. The most general symmetry group transformation by generators of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is found and it is shown that this transformation preserves the boundedness of solutions, and an example of transformation of a soliton solution into a completely new soliton of a different type is presented. Moreover, it is explained how an infinite sequence of bounded solutions can thus be generated, yielding new solitons. Several other important properties of solutions and symmetry group transformations of the system are also demonstrated. As the system of Schrödinger equations under study turns out to be of Lagrange type, conservation laws associated with all variational symmetries of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are constructed and interpreted. Some symmetry reductions of the system are also derived.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"130 ","pages":"Article 103356"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton generation and conservation laws for vector light pulses propagating in weakly birefringent waveguides\",\"authors\":\"J.C. Ndogmo , H.Y. Donkeng\",\"doi\":\"10.1016/j.wavemoti.2024.103356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The principal algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of coupled nonlinear Schrödinger equations describing the propagation of polarized optical pulses and involving four-wave mixing terms is obtained in terms of the three arbitrary labelling parameters of the system of equations. This algebra is found to be five-dimensional, indicating the richness in symmetries of the system. The most general symmetry group transformation by generators of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is found and it is shown that this transformation preserves the boundedness of solutions, and an example of transformation of a soliton solution into a completely new soliton of a different type is presented. Moreover, it is explained how an infinite sequence of bounded solutions can thus be generated, yielding new solitons. Several other important properties of solutions and symmetry group transformations of the system are also demonstrated. As the system of Schrödinger equations under study turns out to be of Lagrange type, conservation laws associated with all variational symmetries of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are constructed and interpreted. Some symmetry reductions of the system are also derived.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"130 \",\"pages\":\"Article 103356\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000866\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000866","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Soliton generation and conservation laws for vector light pulses propagating in weakly birefringent waveguides
The principal algebra of coupled nonlinear Schrödinger equations describing the propagation of polarized optical pulses and involving four-wave mixing terms is obtained in terms of the three arbitrary labelling parameters of the system of equations. This algebra is found to be five-dimensional, indicating the richness in symmetries of the system. The most general symmetry group transformation by generators of is found and it is shown that this transformation preserves the boundedness of solutions, and an example of transformation of a soliton solution into a completely new soliton of a different type is presented. Moreover, it is explained how an infinite sequence of bounded solutions can thus be generated, yielding new solitons. Several other important properties of solutions and symmetry group transformations of the system are also demonstrated. As the system of Schrödinger equations under study turns out to be of Lagrange type, conservation laws associated with all variational symmetries of are constructed and interpreted. Some symmetry reductions of the system are also derived.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.