这是一个偶然的附生植物案例,支持附生植物从生活在开放环境中的祖先进化而来的观点。

IF 1.7 4区 生物学 Q3 ECOLOGY Flora Pub Date : 2024-06-11 DOI:10.1016/j.flora.2024.152553
Fabiola Mena-Jiménez , Susana Valencia-Díaz , Angélica María Corona-López , Alejandro Flores-Palacios
{"title":"这是一个偶然的附生植物案例,支持附生植物从生活在开放环境中的祖先进化而来的观点。","authors":"Fabiola Mena-Jiménez ,&nbsp;Susana Valencia-Díaz ,&nbsp;Angélica María Corona-López ,&nbsp;Alejandro Flores-Palacios","doi":"10.1016/j.flora.2024.152553","DOIUrl":null,"url":null,"abstract":"<div><p>Approximately 10 % of vascular plants can grow as epiphytes, but the impact of epiphytism is more remarkable because there is an unknown percentage of re-terrestrialized taxa that evolved from epiphytic ancestors. Two main hypotheses have been proposed to explain the evolution of epiphytes: one suggests that they evolved from humid, umbrophilous environments (i.e., forest understory; Schimper hypothesis), and the other that they came from an open-infertile environment (Tietze-Pittendrigh hypothesis). The core evidence supporting these hypotheses is the frequency of terrestrial plants that accidentally grow as epiphytes (i.e., accidental epiphytes), because these plants should be abundant in the habitats that promote the colonization of the canopy by the terrestrial plants (i.e., the early state of epiphyte evolution). In a landscape with both environments (humid and umbrophilous vs. open and infertile), we tested the affinity of the flora to the epiphytic habitat and the association of the accidental epiphytes with each environment. We found 71 plant species. Forty-one percent were terrestrial; among the rest, 39 %, 3 %, and 17 % were accidental, facultative (growing equally as terrestrial or arboreal), and true epiphytes (preferentially living as arboreal), respectively. Discounting plants that exclusively grow terrestrially in the sample, in this landscape, a large proportion of the species living in tree crowns are accidental epiphytes (28), and 16 species belong to Asteranae and Rosanae, superorders where epiphytism is infrequent. Nine accidental epiphytes were associated with the open environment and none with the forest, supporting only the Tietze-Pittendrigh hypothesis. Our results support the idea that species from open environments could be preadapted to grow as epiphytes, and landscapes combining forested areas with open environments (e.g., xerophytic scrub, savanna) could promote the colonization of the canopies from terrestrial plants.</p></div>","PeriodicalId":55156,"journal":{"name":"Flora","volume":"317 ","pages":"Article 152553"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case of accidental epiphytes that supports the notion of the evolution of epiphytes from ancestors living in open environments.\",\"authors\":\"Fabiola Mena-Jiménez ,&nbsp;Susana Valencia-Díaz ,&nbsp;Angélica María Corona-López ,&nbsp;Alejandro Flores-Palacios\",\"doi\":\"10.1016/j.flora.2024.152553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Approximately 10 % of vascular plants can grow as epiphytes, but the impact of epiphytism is more remarkable because there is an unknown percentage of re-terrestrialized taxa that evolved from epiphytic ancestors. Two main hypotheses have been proposed to explain the evolution of epiphytes: one suggests that they evolved from humid, umbrophilous environments (i.e., forest understory; Schimper hypothesis), and the other that they came from an open-infertile environment (Tietze-Pittendrigh hypothesis). The core evidence supporting these hypotheses is the frequency of terrestrial plants that accidentally grow as epiphytes (i.e., accidental epiphytes), because these plants should be abundant in the habitats that promote the colonization of the canopy by the terrestrial plants (i.e., the early state of epiphyte evolution). In a landscape with both environments (humid and umbrophilous vs. open and infertile), we tested the affinity of the flora to the epiphytic habitat and the association of the accidental epiphytes with each environment. We found 71 plant species. Forty-one percent were terrestrial; among the rest, 39 %, 3 %, and 17 % were accidental, facultative (growing equally as terrestrial or arboreal), and true epiphytes (preferentially living as arboreal), respectively. Discounting plants that exclusively grow terrestrially in the sample, in this landscape, a large proportion of the species living in tree crowns are accidental epiphytes (28), and 16 species belong to Asteranae and Rosanae, superorders where epiphytism is infrequent. Nine accidental epiphytes were associated with the open environment and none with the forest, supporting only the Tietze-Pittendrigh hypothesis. Our results support the idea that species from open environments could be preadapted to grow as epiphytes, and landscapes combining forested areas with open environments (e.g., xerophytic scrub, savanna) could promote the colonization of the canopies from terrestrial plants.</p></div>\",\"PeriodicalId\":55156,\"journal\":{\"name\":\"Flora\",\"volume\":\"317 \",\"pages\":\"Article 152553\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flora\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0367253024001063\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flora","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367253024001063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

约有 10% 的维管植物可以附生,但附生的影响更为显著,因为从附生祖先进化而来的再陆生类群的比例尚不清楚。人们提出了两种主要假说来解释附生植物的进化:一种假说认为附生植物是从潮湿、亲伞环境(即森林林下;Schimper 假说)中进化而来的;另一种假说认为附生植物是从开放-不肥沃环境(Tietze-Pittendrigh 假说)中进化而来的。支持这些假说的核心证据是陆生植物意外生长为附生植物(即意外附生植物)的频率,因为在促进陆生植物定殖树冠的生境(即附生植物进化的早期状态)中,这些植物应该很丰富。在一个具有两种环境(潮湿、亲伞与开阔、贫瘠)的景观中,我们测试了植物区系与附生生境的亲和性,以及意外附生植物与每种环境的关联性。我们发现了 71 种植物。其中 41% 为陆生植物;其余植物中,39%、3% 和 17% 分别为意外附生植物、兼性附生植物(同样为陆生或树生)和真正的附生植物(优先选择树生)。如果不考虑样本中只生长在陆地上的植物,在该景观中,大部分生活在树冠上的物种都是偶然附生的(28 种),其中有 16 种属于菊科(Asteranae)和蔷薇科(Rosanae),这些超门类植物很少附生。有 9 种意外附生植物与开放环境有关,没有一种与森林有关,仅支持 Tietze-Pittendrigh 假设。我们的研究结果支持这样一种观点,即开放环境中的物种可以预先适应作为附生植物生长,森林地区与开放环境相结合的景观(如干旱灌丛、热带稀树草原)可以促进陆生植物在树冠上的定殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case of accidental epiphytes that supports the notion of the evolution of epiphytes from ancestors living in open environments.

Approximately 10 % of vascular plants can grow as epiphytes, but the impact of epiphytism is more remarkable because there is an unknown percentage of re-terrestrialized taxa that evolved from epiphytic ancestors. Two main hypotheses have been proposed to explain the evolution of epiphytes: one suggests that they evolved from humid, umbrophilous environments (i.e., forest understory; Schimper hypothesis), and the other that they came from an open-infertile environment (Tietze-Pittendrigh hypothesis). The core evidence supporting these hypotheses is the frequency of terrestrial plants that accidentally grow as epiphytes (i.e., accidental epiphytes), because these plants should be abundant in the habitats that promote the colonization of the canopy by the terrestrial plants (i.e., the early state of epiphyte evolution). In a landscape with both environments (humid and umbrophilous vs. open and infertile), we tested the affinity of the flora to the epiphytic habitat and the association of the accidental epiphytes with each environment. We found 71 plant species. Forty-one percent were terrestrial; among the rest, 39 %, 3 %, and 17 % were accidental, facultative (growing equally as terrestrial or arboreal), and true epiphytes (preferentially living as arboreal), respectively. Discounting plants that exclusively grow terrestrially in the sample, in this landscape, a large proportion of the species living in tree crowns are accidental epiphytes (28), and 16 species belong to Asteranae and Rosanae, superorders where epiphytism is infrequent. Nine accidental epiphytes were associated with the open environment and none with the forest, supporting only the Tietze-Pittendrigh hypothesis. Our results support the idea that species from open environments could be preadapted to grow as epiphytes, and landscapes combining forested areas with open environments (e.g., xerophytic scrub, savanna) could promote the colonization of the canopies from terrestrial plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flora
Flora 生物-植物科学
CiteScore
3.30
自引率
10.50%
发文量
130
审稿时长
54 days
期刊介绍: FLORA publishes original contributions and review articles on plant structure (morphology and anatomy), plant distribution (incl. phylogeography) and plant functional ecology (ecophysiology, population ecology and population genetics, organismic interactions, community ecology, ecosystem ecology). Manuscripts (both original and review articles) on a single topic can be compiled in Special Issues, for which suggestions are welcome. FLORA, the scientific botanical journal with the longest uninterrupted publication sequence (since 1818), considers manuscripts in the above areas which appeal a broad scientific and international readership. Manuscripts focused on floristics and vegetation science will only be considered if they exceed the pure descriptive approach and have relevance for interpreting plant morphology, distribution or ecology. Manuscripts whose content is restricted to purely systematic and nomenclature matters, to geobotanical aspects of only local interest, to pure applications in agri-, horti- or silviculture and pharmacology, and experimental studies dealing exclusively with investigations at the cellular and subcellular level will not be accepted. Manuscripts dealing with comparative and evolutionary aspects of morphology, anatomy and development are welcome.
期刊最新文献
Editorial Board Standardization of two forms of the CRENATE (Pooideae Benth.) phytolith morphotype and their potential for environmental reconstructions Heteroblasty in Conchocarpus heterophyllus (A.St.-Hil.) Kallunki & Pirani (Rutaceae): An approach of leaf development from the unifoliolate leaves Bioclimatic variables affect seed mass and seedling traits of four Gymnocalycium (Cactaceae) species along elevational gradients Biosystematics studies of endemic Thlaspi violascens Boiss. and T. densiflorum Boiss. & Kotschy: Highlights on molecular and morphological identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1