基于激光烧蚀的皮质骨钻孔的体内外参数研究。

IF 2.1 4区 医学 Q3 ENGINEERING, BIOMEDICAL Lasers in Medical Science Pub Date : 2024-06-15 DOI:10.1007/s10103-024-04106-y
Sucharita Banerjee, Mangesh V Pantawane, Narendra B Dahotre
{"title":"基于激光烧蚀的皮质骨钻孔的体内外参数研究。","authors":"Sucharita Banerjee, Mangesh V Pantawane, Narendra B Dahotre","doi":"10.1007/s10103-024-04106-y","DOIUrl":null,"url":null,"abstract":"<p><p>Frequently orthopedic surgeries require mechanical drilling processes especially for inserted biodegradable screws or removing small bone lesions. However mechanical drilling techniques induce large number of forces as well as have substantially lower material removal rates resulting in prolong healing times. This study focuses on analyzing the impact of quasi-continuous laser drilling on the bone's surface as well as optimizing the drilling conditions to achieve high material removal rates. An ex-vivo study was conducted on the cortical region of desiccated bovine bone. The laser-based drilling on the bovine bine specimens was conducted in an argon atmosphere using a number of laser pulses ranging from 100 to 15,000. The morphology of the resulting laser drilled cavities was characterized using Energy dispersive Spectroscopy (EDS) and the width and depth of the drills were measured using a laser based Profilometer. Data from the profilometer was then used to calculate material removal rates. At last, the material removal rates and laser processing parameters were used to develop a statistical model based on Design of Experiments (DOE) approach to predict the optimal laser drilling parameters. The main outcome of the study based on the laser drilled cavities was that as the number of laser pulses increases, the depth and diameter of the cavities progressively increase. However, the material removal rates revealed a decrease in value at a point between 4000 and 6000 laser pulses. Therefore, based on the sequential sum of square method, a polynomial curve to the 6th power was fit to the experimental data. The predicted equation of the curve had a p-value of 0.0010 indicating statistical significance and predicted the maximum material removal rate to be 32.10 mm<sup>3</sup>/s with 95%CI [28.3,35.9] which was associated with the optimum number of laser pulses of 4820. Whereas the experimental verification of bone drilling with 4820 laser pulses yielded a material removal rate of 33.37 mm<sup>3</sup>/s. Therefore, this study found that the carbonized layer formed due to laser processing had a decreased carbon content and helped in increasing the material removal rate. Then using the experimental data, a polymetric equation to the sixth power was developed which predicted the optimized material removal rate to occur at 4820 pulses.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ex-vivo parametric study of laser ablation-based drilling of cortical bone.\",\"authors\":\"Sucharita Banerjee, Mangesh V Pantawane, Narendra B Dahotre\",\"doi\":\"10.1007/s10103-024-04106-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Frequently orthopedic surgeries require mechanical drilling processes especially for inserted biodegradable screws or removing small bone lesions. However mechanical drilling techniques induce large number of forces as well as have substantially lower material removal rates resulting in prolong healing times. This study focuses on analyzing the impact of quasi-continuous laser drilling on the bone's surface as well as optimizing the drilling conditions to achieve high material removal rates. An ex-vivo study was conducted on the cortical region of desiccated bovine bone. The laser-based drilling on the bovine bine specimens was conducted in an argon atmosphere using a number of laser pulses ranging from 100 to 15,000. The morphology of the resulting laser drilled cavities was characterized using Energy dispersive Spectroscopy (EDS) and the width and depth of the drills were measured using a laser based Profilometer. Data from the profilometer was then used to calculate material removal rates. At last, the material removal rates and laser processing parameters were used to develop a statistical model based on Design of Experiments (DOE) approach to predict the optimal laser drilling parameters. The main outcome of the study based on the laser drilled cavities was that as the number of laser pulses increases, the depth and diameter of the cavities progressively increase. However, the material removal rates revealed a decrease in value at a point between 4000 and 6000 laser pulses. Therefore, based on the sequential sum of square method, a polynomial curve to the 6th power was fit to the experimental data. The predicted equation of the curve had a p-value of 0.0010 indicating statistical significance and predicted the maximum material removal rate to be 32.10 mm<sup>3</sup>/s with 95%CI [28.3,35.9] which was associated with the optimum number of laser pulses of 4820. Whereas the experimental verification of bone drilling with 4820 laser pulses yielded a material removal rate of 33.37 mm<sup>3</sup>/s. Therefore, this study found that the carbonized layer formed due to laser processing had a decreased carbon content and helped in increasing the material removal rate. Then using the experimental data, a polymetric equation to the sixth power was developed which predicted the optimized material removal rate to occur at 4820 pulses.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-024-04106-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04106-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨科手术通常需要使用机械钻孔工艺,尤其是在插入生物可降解螺钉或清除小的骨损伤时。然而,机械钻孔技术会产生大量的力,而且材料去除率较低,导致愈合时间延长。本研究的重点是分析准连续激光钻孔对骨表面的影响,并优化钻孔条件,以达到较高的材料去除率。研究人员对干燥牛骨的皮质区域进行了体外研究。在氩气环境下对牛骨标本进行激光钻孔,激光脉冲数从 100 到 15000 不等。使用能量色散光谱仪(EDS)对激光钻孔产生的空腔形态进行表征,并使用激光轮廓仪测量钻孔的宽度和深度。然后利用轮廓仪的数据计算材料去除率。最后,利用材料去除率和激光加工参数开发了基于实验设计(DOE)方法的统计模型,以预测最佳激光钻孔参数。基于激光钻孔空腔的主要研究结果是,随着激光脉冲数的增加,空腔的深度和直径逐渐增大。然而,材料去除率却在 4000 至 6000 个激光脉冲之间出现下降。因此,根据连续平方和法,对实验数据拟合了一条 6 次方的多项式曲线。该曲线的预测方程的 p 值为 0.0010,表明具有统计学意义,预测的最大材料去除率为 32.10 mm3/s,95%CI [28.3,35.9],与 4820 的最佳激光脉冲数有关。而在使用 4820 个激光脉冲进行骨钻孔的实验验证中,材料去除率为 33.37 mm3/s。因此,本研究发现,激光加工形成的碳化层含碳量降低,有助于提高材料去除率。然后,利用实验数据建立了一个六次方方程,预测了 4820 脉冲时的最佳材料去除率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ex-vivo parametric study of laser ablation-based drilling of cortical bone.

Frequently orthopedic surgeries require mechanical drilling processes especially for inserted biodegradable screws or removing small bone lesions. However mechanical drilling techniques induce large number of forces as well as have substantially lower material removal rates resulting in prolong healing times. This study focuses on analyzing the impact of quasi-continuous laser drilling on the bone's surface as well as optimizing the drilling conditions to achieve high material removal rates. An ex-vivo study was conducted on the cortical region of desiccated bovine bone. The laser-based drilling on the bovine bine specimens was conducted in an argon atmosphere using a number of laser pulses ranging from 100 to 15,000. The morphology of the resulting laser drilled cavities was characterized using Energy dispersive Spectroscopy (EDS) and the width and depth of the drills were measured using a laser based Profilometer. Data from the profilometer was then used to calculate material removal rates. At last, the material removal rates and laser processing parameters were used to develop a statistical model based on Design of Experiments (DOE) approach to predict the optimal laser drilling parameters. The main outcome of the study based on the laser drilled cavities was that as the number of laser pulses increases, the depth and diameter of the cavities progressively increase. However, the material removal rates revealed a decrease in value at a point between 4000 and 6000 laser pulses. Therefore, based on the sequential sum of square method, a polynomial curve to the 6th power was fit to the experimental data. The predicted equation of the curve had a p-value of 0.0010 indicating statistical significance and predicted the maximum material removal rate to be 32.10 mm3/s with 95%CI [28.3,35.9] which was associated with the optimum number of laser pulses of 4820. Whereas the experimental verification of bone drilling with 4820 laser pulses yielded a material removal rate of 33.37 mm3/s. Therefore, this study found that the carbonized layer formed due to laser processing had a decreased carbon content and helped in increasing the material removal rate. Then using the experimental data, a polymetric equation to the sixth power was developed which predicted the optimized material removal rate to occur at 4820 pulses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lasers in Medical Science
Lasers in Medical Science 医学-工程:生物医学
CiteScore
4.50
自引率
4.80%
发文量
192
审稿时长
3-8 weeks
期刊介绍: Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics. The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.
期刊最新文献
Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells. Antifungal efficacy of photodynamic therapy on Cryptococcus and Candida species is enhanced by Streptomyces spp. extracts in vitro. Optimizing near infrared laser irradiation and photosensitizer accumulation period for indocyanine green-mediated photodynamic therapy in breast cancer xenografts: a focus on treatment and characterization. Photobiomodulation using red and infrared spectrum light emitting-diode (LED) for the healing of diabetic foot ulcers: a controlled randomized clinical trial. Blue light inhibits cell viability and proliferation in hair follicle stem cells and dermal papilla cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1