轨迹校正可实现自由运行的化学位移编码成像,从而在 3T 下准确量化心脏质子密度脂肪分数。

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Magnetic Resonance Pub Date : 2024-06-13 DOI:10.1016/j.jocmr.2024.101048
Pierre Daudé, Thomas Troalen, Adèle L C Mackowiak, Emilien Royer, Davide Piccini, Jérôme Yerly, Josef Pfeuffer, Frank Kober, Sylviane Confort Gouny, Monique Bernard, Matthias Stuber, Jessica A M Bastiaansen, Stanislas Rapacchi
{"title":"轨迹校正可实现自由运行的化学位移编码成像,从而在 3T 下准确量化心脏质子密度脂肪分数。","authors":"Pierre Daudé, Thomas Troalen, Adèle L C Mackowiak, Emilien Royer, Davide Piccini, Jérôme Yerly, Josef Pfeuffer, Frank Kober, Sylviane Confort Gouny, Monique Bernard, Matthias Stuber, Jessica A M Bastiaansen, Stanislas Rapacchi","doi":"10.1016/j.jocmr.2024.101048","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.</p><p><strong>Methods: </strong>Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.</p><p><strong>Results: </strong>In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).</p><p><strong>Conclusions: </strong>Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trajectory correction enables free-running chemical shift encoded imaging for accurate cardiac proton-density fat fraction quantification at 3T.\",\"authors\":\"Pierre Daudé, Thomas Troalen, Adèle L C Mackowiak, Emilien Royer, Davide Piccini, Jérôme Yerly, Josef Pfeuffer, Frank Kober, Sylviane Confort Gouny, Monique Bernard, Matthias Stuber, Jessica A M Bastiaansen, Stanislas Rapacchi\",\"doi\":\"10.1016/j.jocmr.2024.101048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.</p><p><strong>Methods: </strong>Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.</p><p><strong>Results: </strong>In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).</p><p><strong>Conclusions: </strong>Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101048\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:代谢性疾病会对心外膜脂肪堆积和组成产生负面影响,而定量心脏化学位移编码(CSE)磁共振成像可通过绘制质子密度脂肪分数(PDFF)图来探查这一点。为了获得运动分辨的高分辨率 PDFF 图,我们提出了在 3T 下自由运行的心脏 CSE-MRI 框架。为了采用更快的双极读出梯度,我们使用梯度脉冲响应函数(GIRF)对梯度缺陷进行了校正,并对中间图像和 PDFF 定量进行了评估:在体外和体内 3T 条件下,对十分钟自由运行的心脏三维径向 CSE-MRI 采集进行了比较。单极和双极读出梯度方案分别提供 8 个回波(TE1/ΔTE = 1.16/1.96ms)和 13 个回波(TE1/ΔTE = 1.12/1.07ms)。在进行或不进行 GIRF 校正的情况下,重建了双极梯度自由运行的心脏脂肪和水图像以及 PDFF 图。在 10 名健康志愿者和 3 名糖尿病患者体内,对脂肪/水模型、体外和体内的 PDFF 值进行了评估:结果:在单极模式下,脂肪与水的交换在硅学中得到了证实,在体外也得到了证实。使用双极读出梯度,经 GIRF 校正后,PDFF 定量可靠准确,硅学平均偏差为 0.03%,体外平均偏差为 0.36%,而不经校正则会出现伪影,导致体外 PDFF 偏差为 4.9%,体内则出现互换。使用双极读出梯度,体内心外膜脂肪组织的 PDFF 明显低于皮下脂肪(80.4±7.1% vs 92.5±4.3%,PC 结论:为了准确量化 PDFF,高分辨率自由运行心脏 CSE-MRI 成像被证明可受益于 3T 下 k 空间轨迹校正的双极回波。这种自由呼吸采集框架可用于研究代谢性疾病中心外膜脂肪组织的 PDFF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory correction enables free-running chemical shift encoded imaging for accurate cardiac proton-density fat fraction quantification at 3T.

Background: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.

Methods: Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.

Results: In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).

Conclusions: Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
期刊最新文献
Design and Rationale of MYOFLAME-19 RCT: MYOcardial protection to reduce inFLAMmatory heart disease due to COVID-19 Infection using CMR Endpoints. Association Between Subclinical Right Ventricular Alterations and Aerobic Exercise Capacity in Type 2 Diabetes. Biventricular longitudinal strain analysis using CMR feature-tracking: prognostic value in Eisenmenger syndrome. Interstitial Fibrosis and Arrhythmic Mitral Valve Prolapse: Unravelling Sex-Based Differences. Safety of dobutamine stress cardiovascular magnetic resonance in patients with prior coronary artery bypass grafting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1