实现全固态锂电池可回收性的界面层

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-12 DOI:10.1021/acsenergylett.4c01153
Yi-Chen Lan, Po-Hao Lai, Bryan D. Vogt, Enrique D. Gomez
{"title":"实现全固态锂电池可回收性的界面层","authors":"Yi-Chen Lan, Po-Hao Lai, Bryan D. Vogt, Enrique D. Gomez","doi":"10.1021/acsenergylett.4c01153","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries provide opportunities for safe and robust energy storage solutions. An emerging issue is the final disposal of spent batteries due to the required production scale, limited lifetime, and lack of recycling methods. Here, we propose an architectural design for recyclable all-solid-state lithium batteries based on interfacial layers at the electrodes. Flexible lithium bis(fluorosulfonyl)imide doped polypropylene carbonate (PPC-LiFSI) interfacial layers improve physical contacts at Li metal and Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO)-based composite electrolytes interfaces and serve as sacrificial layers to enable clean separation and direct recycling. Recovered components demonstrate the preservation of electrochemical properties through direct reintegration into batteries. Fully recovered full cells with Li-metal and LTO anodes show 92.5% and 93.8% of original discharge capacity at 0.05 C and room temperature. We demonstrate an approach for the design of recyclable all-solid-state lithium batteries to fulfill long-term goals for sustainable energy storage devices.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Layers to Enable Recyclability of All-Solid-State Lithium Batteries\",\"authors\":\"Yi-Chen Lan, Po-Hao Lai, Bryan D. Vogt, Enrique D. Gomez\",\"doi\":\"10.1021/acsenergylett.4c01153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-solid-state batteries provide opportunities for safe and robust energy storage solutions. An emerging issue is the final disposal of spent batteries due to the required production scale, limited lifetime, and lack of recycling methods. Here, we propose an architectural design for recyclable all-solid-state lithium batteries based on interfacial layers at the electrodes. Flexible lithium bis(fluorosulfonyl)imide doped polypropylene carbonate (PPC-LiFSI) interfacial layers improve physical contacts at Li metal and Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO)-based composite electrolytes interfaces and serve as sacrificial layers to enable clean separation and direct recycling. Recovered components demonstrate the preservation of electrochemical properties through direct reintegration into batteries. Fully recovered full cells with Li-metal and LTO anodes show 92.5% and 93.8% of original discharge capacity at 0.05 C and room temperature. We demonstrate an approach for the design of recyclable all-solid-state lithium batteries to fulfill long-term goals for sustainable energy storage devices.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01153\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全固态电池为安全、稳健的能源存储解决方案提供了机遇。一个新出现的问题是,由于所需的生产规模、有限的使用寿命和缺乏回收方法,废旧电池的最终处置问题日益突出。在此,我们提出了一种基于电极界面层的可回收全固态锂电池结构设计。柔性双(氟磺酰)亚胺掺杂聚丙烯碳酸酯(PPC-LiFSI)界面层改善了金属锂和基于 Li7La3Zr2O12(LLZO)的复合电解质界面的物理接触,并可作为牺牲层,实现清洁分离和直接回收。回收的组件表明,通过直接重新整合到电池中,电化学特性得以保留。在 0.05 摄氏度和室温条件下,带有锂金属和 LTO 阳极的完全回收电池分别显示出 92.5% 和 93.8% 的原始放电容量。我们展示了一种设计可回收全固态锂电池的方法,以实现可持续储能设备的长期目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial Layers to Enable Recyclability of All-Solid-State Lithium Batteries
All-solid-state batteries provide opportunities for safe and robust energy storage solutions. An emerging issue is the final disposal of spent batteries due to the required production scale, limited lifetime, and lack of recycling methods. Here, we propose an architectural design for recyclable all-solid-state lithium batteries based on interfacial layers at the electrodes. Flexible lithium bis(fluorosulfonyl)imide doped polypropylene carbonate (PPC-LiFSI) interfacial layers improve physical contacts at Li metal and Li7La3Zr2O12 (LLZO)-based composite electrolytes interfaces and serve as sacrificial layers to enable clean separation and direct recycling. Recovered components demonstrate the preservation of electrochemical properties through direct reintegration into batteries. Fully recovered full cells with Li-metal and LTO anodes show 92.5% and 93.8% of original discharge capacity at 0.05 C and room temperature. We demonstrate an approach for the design of recyclable all-solid-state lithium batteries to fulfill long-term goals for sustainable energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas Ionocovalency of the Central Metal Halide Bond-Dependent Chemical Compatibility of Halide Solid Electrolytes with Li6PS5Cl Using Electron Microscopy to Explore Solar Cell Interfaces: Microstructures, Efficiency, and Stability Operando Raman Gradient Analysis for Temperature-Dependent Electrolyte Characterization Energy-Efficient Perovskite LEDs with Rec. 2020 Compliance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1