{"title":"祖先核糖核酸酶重新启动,以进化动力学为指导设计蛋白质。","authors":"","doi":"10.1016/j.tibs.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics behavior of a protein is essential for its functionality. Here, <span><span>Doucet <em>et al</em>.</span><svg><path></path></svg></span><span> demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.</span></p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 8","pages":"Pages 660-662"},"PeriodicalIF":11.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ancestral ribonucleases back in motion for evolutionary-dynamics guided protein design\",\"authors\":\"\",\"doi\":\"10.1016/j.tibs.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamics behavior of a protein is essential for its functionality. Here, <span><span>Doucet <em>et al</em>.</span><svg><path></path></svg></span><span> demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.</span></p></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 8\",\"pages\":\"Pages 660-662\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001488\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001488","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ancestral ribonucleases back in motion for evolutionary-dynamics guided protein design
The dynamics behavior of a protein is essential for its functionality. Here, Doucet et al. demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.