{"title":"EXPRESS:利用激光诱导击穿光谱和多元分析对混凝土压缩强度进行准无损估算。","authors":"Shuzo Eto, Taku Otsuka","doi":"10.1177/00037028241262040","DOIUrl":null,"url":null,"abstract":"<p><p>Micro- and non-destructive methods of estimating compressive strength are useful for diagnosing the degradation of reinforced structures. The velocity of waves propagating through concrete can be measured using conventional non-destructive methods; however, the propagation path of waves varies depending on the distribution of coarse aggregate, resulting in variations in velocity at different measurement points. To address this issue, a method based on laser-induced breakdown spectroscopy and multivariate analysis was developed in this study for estimating the compressive strength of concrete non-destructively, ensuring the non-influence of the coarse aggregate spatial distribution. The method is based on the correlation between the emission intensity of the spectrum and the hardness of the object to be measured. Principal component analysis and partial least squares regression (PLSR) were used to extract the mortar spectrum, which determines the compressive strength of concrete, from a mixture of aggregate and mortar spectra. The compressive strength estimated based on the proposed method was consistent with the values obtained from the compressive strength test, which indicates the possibility of using multivariable analysis to estimate the compressive strength of concrete. Furthermore, the proposed method enabled on-site measurements through a simple experimental setup and insensitivity to spectral noise offered by PLSR.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Non-Destructive Estimation of Concrete Compression Strength Using Laser-Induced Breakdown Spectroscopy and Multivariate Analysis.\",\"authors\":\"Shuzo Eto, Taku Otsuka\",\"doi\":\"10.1177/00037028241262040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro- and non-destructive methods of estimating compressive strength are useful for diagnosing the degradation of reinforced structures. The velocity of waves propagating through concrete can be measured using conventional non-destructive methods; however, the propagation path of waves varies depending on the distribution of coarse aggregate, resulting in variations in velocity at different measurement points. To address this issue, a method based on laser-induced breakdown spectroscopy and multivariate analysis was developed in this study for estimating the compressive strength of concrete non-destructively, ensuring the non-influence of the coarse aggregate spatial distribution. The method is based on the correlation between the emission intensity of the spectrum and the hardness of the object to be measured. Principal component analysis and partial least squares regression (PLSR) were used to extract the mortar spectrum, which determines the compressive strength of concrete, from a mixture of aggregate and mortar spectra. The compressive strength estimated based on the proposed method was consistent with the values obtained from the compressive strength test, which indicates the possibility of using multivariable analysis to estimate the compressive strength of concrete. Furthermore, the proposed method enabled on-site measurements through a simple experimental setup and insensitivity to spectral noise offered by PLSR.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241262040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241262040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Quasi-Non-Destructive Estimation of Concrete Compression Strength Using Laser-Induced Breakdown Spectroscopy and Multivariate Analysis.
Micro- and non-destructive methods of estimating compressive strength are useful for diagnosing the degradation of reinforced structures. The velocity of waves propagating through concrete can be measured using conventional non-destructive methods; however, the propagation path of waves varies depending on the distribution of coarse aggregate, resulting in variations in velocity at different measurement points. To address this issue, a method based on laser-induced breakdown spectroscopy and multivariate analysis was developed in this study for estimating the compressive strength of concrete non-destructively, ensuring the non-influence of the coarse aggregate spatial distribution. The method is based on the correlation between the emission intensity of the spectrum and the hardness of the object to be measured. Principal component analysis and partial least squares regression (PLSR) were used to extract the mortar spectrum, which determines the compressive strength of concrete, from a mixture of aggregate and mortar spectra. The compressive strength estimated based on the proposed method was consistent with the values obtained from the compressive strength test, which indicates the possibility of using multivariable analysis to estimate the compressive strength of concrete. Furthermore, the proposed method enabled on-site measurements through a simple experimental setup and insensitivity to spectral noise offered by PLSR.